Plant Disease Prediction using Transfer Learning Techniques

被引:0
|
作者
Lakshmanarao, A. [1 ]
Supriya, N. [2 ]
Arulinurugan, A. [3 ]
机构
[1] Aditya Engn Coll, Dept Informat Technol, Surampalem, India
[2] Malla Reddy Engn Coll A, Dept CSE, Hyderabad, Telangana, India
[3] Vignans Fdn Sci Technol & Res DEEMED Univ, Guntur, Andhra Pradesh, India
关键词
Plant Disease; Transfer Learning; Kaggle; Deep Learning;
D O I
10.1109/ICAECT54875.2022.9807956
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Plant diseases are a significant hazard to feed a growing population, but due to a lack of infrastructure in many regions of the world, timely detection is challenging. Finding and detecting plant illness is essential in agricultural production. It takes a great deal of time and effort to find the disease. Agricultural sector can also reap the benefits of machine learning and deep learning. There has been a recent rise in the use of ML &DL techniques in plant disease identification. In this paper, we applied transfer learning technique for plant disease prediction. We used a `plantvillage' dataset collected from Kaggle. Images of fifteen different types of plant leaves (Tomato, Potato, Pepper bell), from three distinct plants are included in this collection. We split the original dataset into three parts for three different plants and applied three transfer learning techniques VGG16, RESNET50, Inception and achieved accuracy of 98.7%, 98.6%, 99% respectively. The results of experiments shown that our proposed model achieved good accuracy when compared to traditional models.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Creutzfeldt-Jakob Disease Prediction Using Machine Learning Techniques
    Bhakta, Arnav
    Byrne, Carolyn
    2021 IEEE 9TH INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI 2021), 2021, : 535 - 542
  • [32] Automated prediction of Heart disease using optimized machine learning techniques
    Alqahtani, Lama A.
    Alotaibi, Hanadi M.
    Khan, Irfan Ullah
    Aslam, Nida
    2020 11TH IEEE ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2020, : 298 - 302
  • [33] An Intelligent Heart Disease Prediction Framework Using Machine Learning and Deep Learning Techniques
    Allheeib, Nasser
    Kanwal, Summrina
    Alamri, Sultan
    INTERNATIONAL JOURNAL OF DATA WAREHOUSING AND MINING, 2023, 19 (01)
  • [34] Improving Rice Disease Diagnosis Using Ensemble Transfer Learning Techniques
    Sharma, Mayuri
    Kumar, Chandan Jyoti
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2022, 31 (08)
  • [35] A Framework for Agriculture Plant Disease Prediction using Deep Learning Classifier
    Baljon, Mohammelad
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (08) : 1098 - 1111
  • [36] Machine learning techniques for dental disease prediction
    Iffat Firozy Rimi
    Md. Ariful Islam Arif
    Sharmin Akter
    Md. Riazur Rahman
    A. H. M. Saiful Islam
    Md. Tarek Habib
    Iran Journal of Computer Science, 2022, 5 (3) : 187 - 195
  • [37] Plant leaves disease detection using Image Processing and Machine learning techniques
    Kokardekar, P.
    Shah, Aman
    Thakur, Arjun
    Shahu, Prachi
    Raggad, Rohan
    Keshaowar, Sudhanshu
    Pashine, Vineet
    INTERNATIONAL JOURNAL OF NEXT-GENERATION COMPUTING, 2022, 13 (05): : 1304 - 1311
  • [38] Rice plant disease diagnosing using machine learning techniques: a comprehensive review
    G. K. V. L. Udayananda
    Chathurangi Shyalika
    P. P. N. V. Kumara
    SN Applied Sciences, 2022, 4
  • [39] Rice plant disease diagnosing using machine learning techniques: a comprehensive review
    Udayananda, G. K. V. L.
    Shyalika, Chathurangi
    Kumara, P. P. N., V
    SN APPLIED SCIENCES, 2022, 4 (11):
  • [40] Organ Risk Prediction for Parkinson's Disease using Deep Learning Techniques
    Raizada, Sandali
    Verma, Yashita
    Mala, Shuchi
    Shankar, Achyut
    Thakur, Sanjeev
    2021 11TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE & ENGINEERING (CONFLUENCE 2021), 2021, : 978 - 983