Finite-size effects and thermodynamic limit in one-dimensional Janus fluids

被引:2
|
作者
Fantoni, R. [1 ]
Maestre, M. A. G. [2 ]
Santos, A. [2 ,3 ]
机构
[1] Univ Trieste, Dipartimento Fis, Str Costiera 11, I-34151 Trieste, Italy
[2] Univ Extremadura, Dept Fis, E-06006 Badajoz, Spain
[3] Univ Extremadura, Inst Computac Cient Avanzada ICCAEx, E-06006 Badajoz, Spain
关键词
exact results; classical Monte Carlo simulations; colloids; bio-colloids and nano-colloids; EQUATION-OF-STATE; CLASSICAL FLUID; PARTICLES; SPHERES; WELL;
D O I
10.1088/1742-5468/ac2897
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The equilibrium properties of a Janus fluid made of two-face particles confined to a one-dimensional channel are revisited. The exact Gibbs free energy for a finite number of particles N is exactly derived for both quenched and annealed realizations. It is proved that the results for both classes of systems tend in the thermodynamic limit (N -> infinity) to a common expression recently derived (Maestre and Santos 2020 J. Stat. Mech. 063217). The theoretical finite-size results are particularized to the Kern-Frenkel model and confirmed by Monte Carlo simulations for quenched and (both biased and unbiased) annealed systems.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] Finite-size scaling studies of massive one-dimensional lattice models
    Liu, YC
    Dai, JH
    Qin, SJ
    Yu, L
    PHYSICAL REVIEW B, 2001, 64 (10)
  • [22] Braiding induced by the finite-size effect in one-dimensional topological superconductors
    Pan, Hongfa
    Li, Zhengtian
    Jia, Jinxiong
    Qiao, Zhenhua
    PHYSICAL REVIEW B, 2024, 110 (16)
  • [23] ARITHMETICAL FINITE-SIZE CORRECTIONS IN ONE-DIMENSIONAL QUANTUM-SYSTEMS
    AUDIT, P
    TRUONG, TT
    PHYSICS LETTERS A, 1990, 145 (6-7) : 309 - 313
  • [24] Wave transport in one-dimensional disordered systems with finite-size scatterers
    Diaz, Marlos
    Mello, Pier A.
    Yepez, Miztli
    Tomsovic, Steven
    PHYSICAL REVIEW B, 2015, 91 (18)
  • [25] Vortices in Bose-Einstein condensates: Finite-size effects and the thermodynamic limit
    Cremon, J. C.
    Kavoulakis, G. M.
    Mottelson, B. R.
    Reimann, S. M.
    PHYSICAL REVIEW A, 2013, 87 (05):
  • [26] FINITE-SIZE EFFECTS IN CONFORMAL THEORIES AND THE NONLOCAL OPERATORS IN ONE-DIMENSIONAL QUANTUM-SYSTEMS
    ZABRODIN, AV
    MIRONOV, AD
    JETP LETTERS, 1989, 50 (05) : 241 - 244
  • [27] Quantum phase transition and finite-size scaling of the one-dimensional Ising model
    Um, Jaegon
    Lee, Sung-Ik
    Kim, Beom Jun
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2007, 50 (01) : 285 - 289
  • [28] Finite-size supercell correction scheme for charged defects in one-dimensional systems
    Kim, Sunghyun
    Chang, K. J.
    Park, Ji-Sang
    PHYSICAL REVIEW B, 2014, 90 (08):
  • [30] Charge transfer and anderson localization in one-dimensional finite-size disordered systems
    T. Yu. Astakhova
    V. A. Kashin
    G. A. Vinogradov
    Russian Journal of Physical Chemistry B, 2017, 11 : 481 - 491