Incremental Class Discovery for Semantic Segmentation with RGBD Sensing

被引:15
作者
Nakajima, Yoshikatsu [1 ,2 ]
Kang, Byeongkeun [1 ]
Saito, Hideo [2 ]
Kitani, Kris [1 ]
机构
[1] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
[2] Keio Univ, Tokyo, Japan
来源
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019) | 2019年
关键词
REGIONS;
D O I
10.1109/ICCV.2019.00106
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work addresses the task of open world semantic segmentation using RGBD sensing to discover new semantic classes over time. Although there are many types of objects in the real-word, current semantic segmentation methods make a closed world assumption and are trained only to segment a limited number of object classes. Towards a more open world approach, we propose a novel method that incrementally learns new classes for image segmentation. The proposed system first segments each RGBD frame using both color and geometric information, and then aggregates that information to build a single segmented dense 3D map of the environment. The segmented 3D map representation is a key component of our approach as it is used to discover new object classes by identifying coherent regions in the 3D map that have no semantic label. The use of coherent region in the 3D map as a primitive element, rather than traditional elements such as surfels or voxels, also significantly reduces the computational complexity and memory use of our method. It thus leads to semi-real-time performance at 10.7Hz when incrementally updating the dense 3D map at every frame. Through experiments on the NYUDv2 dataset, we demonstrate that the proposed method is able to correctly cluster objects of both known and unseen classes. We also show the quantitative comparison with the state-of-the-art supervised methods, the processing time of each step, and the influences of each component.
引用
收藏
页码:972 / 981
页数:10
相关论文
共 48 条
  • [1] [Anonymous], THESIS U UTRECHT NET
  • [2] [Anonymous], 2016, CVPR, DOI DOI 10.1109/CVPR.2016.170
  • [3] [Anonymous], 2013, INT C LEARN REPR
  • [4] Contour Detection and Hierarchical Image Segmentation
    Arbelaez, Pablo
    Maire, Michael
    Fowlkes, Charless
    Malik, Jitendra
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (05) : 898 - 916
  • [5] Arbeláez P, 2009, PROC CVPR IEEE, P2294, DOI 10.1109/CVPRW.2009.5206707
  • [6] Pointwise Convolutional Neural Networks
    Binh-Son Hua
    Minh-Khoi Tran
    Yeung, Sai-Kit
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 984 - 993
  • [7] Fast approximate energy minimization via graph cuts
    Boykov, Y
    Veksler, O
    Zabih, R
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2001, 23 (11) : 1222 - 1239
  • [8] DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
    Chen, Liang-Chieh
    Papandreou, George
    Kokkinos, Iasonas
    Murphy, Kevin
    Yuille, Alan L.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) : 834 - 848
  • [9] Mean shift: A robust approach toward feature space analysis
    Comaniciu, D
    Meer, P
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2002, 24 (05) : 603 - 619
  • [10] Shape Completion using 3D-Encoder-Predictor CNNs and Shape Synthesis
    Dai, Angela
    Qi, Charles Ruizhongtai
    Niessner, Matthias
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 6545 - 6554