DECAY/GROWTH RATE ESTIMATION USING INSTANTANEOUS LYAPUNOV EXPONENT

被引:2
作者
Totoki, Yusuke [1 ]
Matsuo, Takami [1 ]
机构
[1] Oita Univ, Dept Mechatron, Oita 8701192, Japan
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2012年 / 22卷 / 03期
关键词
Lyapunov exponent; decay rate; growth rate; linearized flow; nonlinear flow; SYSTEMS; MODEL; SYNCHRONIZATION; STABILITY;
D O I
10.1142/S0218127412500472
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Lyapunov exponent gives a measure of the mean decay/growth rates of the flows of nonlinear systems. However, the Lyapunov exponent needs an infinite time interval of flows and the Jacobian matrix of system dynamics. In this paper, we propose an instantaneous decay/growth rate that is a kind of generalized Lyapunov exponent and call the instantaneous Lyapunov exponent (ILE) with respect to a decay function. The instantaneous Lyapunov exponent is one of the measures that estimate the decay and growth rates of flows of nonlinear systems by assigning a comparison function and can apply a stable system whose decay rate is slower than an exponential function. Moreover, we propose a synchronization measure of two signals using the ILE.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Effect of parameter calculation in direct estimation of the Lyapunov exponent in short time series
    Jiménez, AML
    De Rey, CCMV
    Torres, ARG
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2002, 7 (01) : 41 - 52
  • [22] An Analysis of Gas Metal Arc Welding Using the Lyapunov Exponent
    Li Zhiyong
    Zhang Qiang
    Li Yan
    Yan Xiaocheng
    Srivatsan, T. S.
    MATERIALS AND MANUFACTURING PROCESSES, 2013, 28 (02) : 213 - 219
  • [23] Stochastic stabilization of quasi-partially integrable Hamiltonian systems by using Lyapunov exponent
    Zhu, WQ
    Huang, ZL
    NONLINEAR DYNAMICS, 2003, 33 (02) : 209 - 224
  • [24] Significance of Lyapunov Exponent in Parkinson's disease using Electroencephalography
    Saikia, Angana
    Barua, Amit Ranjan
    Hussain, Masaraf
    Paul, Sudip
    2019 6TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND INTEGRATED NETWORKS (SPIN), 2019, : 791 - 795
  • [25] Using Hurst and Lyapunov Exponent For Hyperspectral Image Feature Extraction
    Yin, Jihao
    Gao, Chao
    Jia, Xiuping
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2012, 9 (04) : 705 - 709
  • [26] Computation of the largest positive Lyapunov exponent using rounding mode and recursive least square algorithm
    Peixoto, Marcia L. C.
    Nepomuceno, Erivelton G.
    Martins, Samir A. M.
    Lacerda, Marcio J.
    CHAOS SOLITONS & FRACTALS, 2018, 112 : 36 - 43
  • [27] Sharp estimation of the almost-sure Lyapunov exponent for the Anderson model in continuous space
    Florescu, I
    Viens, F
    PROBABILITY THEORY AND RELATED FIELDS, 2006, 135 (04) : 603 - 644
  • [28] Sharp estimation of the almost-sure Lyapunov exponent for the Anderson model in continuous space
    Ionuţ Florescu
    Frederi Viens
    Probability Theory and Related Fields, 2006, 135 : 603 - 644
  • [29] Estimation of the largest Lyapunov Exponent for Long-range Correlated Stochastic Time Series
    Gorshkov, Oleg
    11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 2520 - 2523
  • [30] Dissipative dynamics in a finite chaotic environment: Relationship between damping rate and Lyapunov exponent
    Xavier, J. C.
    Strunz, W. T.
    Beims, M. W.
    PHYSICAL REVIEW E, 2015, 92 (02):