DECAY/GROWTH RATE ESTIMATION USING INSTANTANEOUS LYAPUNOV EXPONENT

被引:2
|
作者
Totoki, Yusuke [1 ]
Matsuo, Takami [1 ]
机构
[1] Oita Univ, Dept Mechatron, Oita 8701192, Japan
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2012年 / 22卷 / 03期
关键词
Lyapunov exponent; decay rate; growth rate; linearized flow; nonlinear flow; SYSTEMS; MODEL; SYNCHRONIZATION; STABILITY;
D O I
10.1142/S0218127412500472
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Lyapunov exponent gives a measure of the mean decay/growth rates of the flows of nonlinear systems. However, the Lyapunov exponent needs an infinite time interval of flows and the Jacobian matrix of system dynamics. In this paper, we propose an instantaneous decay/growth rate that is a kind of generalized Lyapunov exponent and call the instantaneous Lyapunov exponent (ILE) with respect to a decay function. The instantaneous Lyapunov exponent is one of the measures that estimate the decay and growth rates of flows of nonlinear systems by assigning a comparison function and can apply a stable system whose decay rate is slower than an exponential function. Moreover, we propose a synchronization measure of two signals using the ILE.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] ON THE LOCAL STABILITY ESTIMATION USING FIRST LYAPUNOV EXPONENT CALCULATION
    Bespalov, Alexander V.
    Chistyakov, Yury S.
    EUROCON 2009: INTERNATIONAL IEEE CONFERENCE DEVOTED TO THE 150 ANNIVERSARY OF ALEXANDER S. POPOV, VOLS 1- 4, PROCEEDINGS, 2009, : 1985 - 1990
  • [2] High precision numerical estimation of the largest Lyapunov exponent
    Kim, Bong Jo
    Choe, Geon Ho
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (05) : 1378 - 1384
  • [3] Lyapunov Exponent and the Growth Rate of Geodesic Deviation in the Jacobi Equation with Random Curvature
    A. E. Mammadova
    D. D. Sokoloff
    Moscow University Physics Bulletin, 2023, 78 : 591 - 594
  • [4] Lyapunov Exponent and the Growth Rate of Geodesic Deviation in the Jacobi Equation with Random Curvature
    Mammadova, A. E.
    Sokoloff, D. D.
    MOSCOW UNIVERSITY PHYSICS BULLETIN, 2023, 78 (05) : 591 - 594
  • [5] Simple estimation method for the second-largest Lyapunov exponent of chaotic differential equations
    Zhou, Shuang
    Wang, Xingyuan
    CHAOS SOLITONS & FRACTALS, 2020, 139
  • [6] Assessment of walking stability by Lyapunov exponent estimation
    Ohtaki, Y
    Iijima, Y
    Arif, M
    Suzuki, A
    Nagatomi, R
    Inooka, H
    SECOND JOINT EMBS-BMES CONFERENCE 2002, VOLS 1-3, CONFERENCE PROCEEDINGS: BIOENGINEERING - INTEGRATIVE METHODOLOGIES, NEW TECHNOLOGIES, 2002, : 2475 - 2476
  • [7] Synchronization-based Estimation of the Maximal Lyapunov Exponent of Nonsmooth Systems
    Baumann, Michael
    Leine, Remco I.
    24TH INTERNATIONAL CONGRESS OF THEORETICAL AND APPLIED MECHANICS - FOUNDATION OF MULTIDISCIPLINARY RESEARCH, 2017, 20 : 26 - 33
  • [8] Lyapunov exponent corresponding to enslaved phase dynamics: Estimation from time series
    Moskalenko, Olga I.
    Koronovskii, Alexey A.
    Hramov, Alexander E.
    PHYSICAL REVIEW E, 2015, 92 (01):
  • [9] Lyapunov Exponent and Out-of-Time-Ordered Correlator's Growth Rate in a Chaotic System
    Rozenbaum, Efim B.
    Ganeshan, Sriram
    Galitski, Victor
    PHYSICAL REVIEW LETTERS, 2017, 118 (08)
  • [10] Criticality calculations in a nuclear reactor by using the Lyapunov exponent method
    Shayesteh, M.
    Behnia, S.
    Saray, A. Abdi
    ANNALS OF NUCLEAR ENERGY, 2012, 43 : 131 - 135