Structure and Reactivity of Mechanoactivated Mg (Al)/MoO3 Nanocomposites

被引:3
作者
Streletskii, A. N. [1 ]
Kolbanev, I. V. [1 ]
Troshin, K. Ya. [1 ]
Borisov, A. A. [1 ]
Leonov, A. V. [2 ]
Mudretsova, S. N. [1 ,2 ]
Artemov, V. V. [3 ]
Dolgoborodov, A. Yu. [1 ]
机构
[1] Russian Acad Sci, Semenov Inst Chem Phys, Moscow, Russia
[2] Moscow MV Lomonosov State Univ, Moscow, Russia
[3] Russian Acad Sci, Inst Crystallog, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
mechanoactivation; Mg (Al)/MoO3 nanocomposites; energetic systems; DEFECTIVE STRUCTURE; COMPOSITES; MAGNESIUM;
D O I
10.1134/S1990793116040114
中图分类号
O64 [物理化学(理论化学)、化学物理学]; O56 [分子物理学、原子物理学];
学科分类号
070203 ; 070304 ; 081704 ; 1406 ;
摘要
X-ray diffraction and thermal analyses, microscopy, and specific surface area measurements are used to study the formation, structure, and reactivity of mechanoactivated Mg/MoO3 and Al/MoO3 nanocomposites during slow heating (10 degrees C/min). The optimal mechanoactivation dose is determined. The mechanoactivated Mg/MoO3 composite is a dense mixture of two nanosized components with a contact surface of similar to 8 m(2)/g (upper estimate). The area of the contact surface between the components of the Al/MoO3 composite is less than 2 m(2)/g, with the sample consisting of micron-sized aluminum flakes coated with nanoparticles oxide nanoparticles. When heated, the Mg/MoO3 system explodes, with the temperature of explosion being determined by the heating conditions. The minimum temperature of conversion is similar to 250 degrees C, close to the temperature of autoignition of fuel-air mixtures promoted by these additives. The Al/MoO3 system is characterized by a phased progress of the reaction in the temperature range of 200 to 1000 degrees C. The reasons for the differences in the reactivity of the mixtures are discussed.
引用
收藏
页码:707 / 718
页数:12
相关论文
共 27 条
[1]   Hallmarks of mechanochemistry: from nanoparticles to technology [J].
Balaz, Peter ;
Achimovicova, Marcela ;
Balaz, Matej ;
Billik, Peter ;
Cherkezova-Zheleva, Zara ;
Manuel Criado, Jose ;
Delogu, Francesco ;
Dutkova, Erika ;
Gaffet, Eric ;
Jose Gotor, Francisco ;
Kumar, Rakesh ;
Mitov, Ivan ;
Rojac, Tadej ;
Senna, Mamoru ;
Streletskii, Andrey ;
Wieczorek-Ciurowa, Krystyna .
CHEMICAL SOCIETY REVIEWS, 2013, 42 (18) :7571-7637
[2]  
Dolgoborodov A.Y., 2004, Khimicheskaya Fizika, V23, P85
[3]   Mechanically activated oxidizer-fuel energetic composites [J].
Dolgoborodov, A. Yu .
COMBUSTION EXPLOSION AND SHOCK WAVES, 2015, 51 (01) :86-99
[4]  
Dolgoborodov A. Yu., 2004, RF Patent, Patent No. [RU 2235085, 2235085]
[5]  
Dolgoborodov A. Yu., 2002, P 29 INT PYR SEM, P557
[6]   Detonation in an aluminum-teflon mixture [J].
Dolgoborodov, AY ;
Makhov, MN ;
Kolbanev, IV ;
Streletskii, AN ;
Fortov, VE .
JETP LETTERS, 2005, 81 (07) :311-314
[7]   Metal-based reactive nanomaterials [J].
Dreizin, Edward L. .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2009, 35 (02) :141-167
[8]  
Dreizin EL, 2009, US Patent, Patent No. [7,524,355, 7524355]
[9]  
Frank-Kamenetskii DA., 1987, Diffusion and Heat Transfer in Chemical Kinetics
[10]  
Korchagin M. A., 2000, International Journal of Self-Propagating High-Temperature Synthesis, V9, P307