Tomography of the quantum state of photons entangled in high dimensions

被引:129
作者
Agnew, Megan [1 ]
Leach, Jonathan [1 ]
McLaren, Melanie [2 ]
Roux, F. Stef [2 ]
Boyd, Robert W. [1 ,3 ]
机构
[1] Univ Ottawa, Dept Phys, Ottawa, ON K1N 6N5, Canada
[2] CSIR Natl Laser Ctr, ZA-0001 Pretoria, South Africa
[3] Univ Rochester, Inst Opt, Rochester, NY 14627 USA
来源
PHYSICAL REVIEW A | 2011年 / 84卷 / 06期
基金
加拿大自然科学与工程研究理事会;
关键词
ANGULAR-MOMENTUM; DENSITY-MATRIX;
D O I
10.1103/PhysRevA.84.062101
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Systems entangled in high dimensions have recently been proposed as important tools for various quantum information protocols, such as multibit quantum key distribution and loophole-free tests of nonlocality. It is therefore important to have precise knowledge of the nature of such entangled quantum states. We tomographically reconstruct the quantum state of the two photons produced by parametric downconversion that are entangled in a d-dimensional orbital angular momentum basis. We determine exactly the density matrix of the entangled two-qudit state with d ranging from 2 to 8. The recording of higher-dimensional states is limited only by the number of data points required and therefore the length of time needed to complete the measurements. We find all the measured states to have fidelities and linear entropies that satisfy the criteria required for a violation of the appropriate high-dimensional Bell inequality. Our results therefore precisely characterize the nature of the entanglement, thus establishing the suitability of such states for applications in quantum information science.
引用
收藏
页数:6
相关论文
共 50 条
[31]   Quantum tomograms from intermediate entangled states [J].
Xu, Shi-Min ;
Xu, Xing-Lei ;
Li, Hong-Qi ;
Wang, Ji-Suo .
PHYSICS LETTERS A, 2009, 373 (32) :2824-2830
[32]   QUANTUM TELEPORTATION OF ENTANGLED STATES IN THE PRESENCE OF NOISE [J].
Dotsenko, I. S. ;
Korobka, R. S. .
UKRAINIAN JOURNAL OF PHYSICS, 2013, 58 (03) :268-277
[33]   Hong-Ou-Mandel interference of spin-orbit hybrid entangled photons [J].
Hong, Ling ;
Cao, Xiyue ;
Chen, Yuanyuan ;
Chen, Lixiang .
APL PHOTONICS, 2023, 8 (12)
[34]   Quantum control of atoms and photons by optical nanofibers [J].
Balykin, V I .
PHYSICS-USPEKHI, 2014, 57 (06) :607-615
[35]   Continuous-variable quantum process tomography with squeezed-state probes [J].
Fiurasek, Jaromir .
PHYSICAL REVIEW A, 2015, 92 (02)
[36]   Quantum state tomography measurements on strain-tuned InxGa1-xAs/GaAs quantum dots [J].
Joens, K. D. ;
Hafenbrak, R. ;
Atkinson, P. ;
Rastelli, A. ;
Schmidt, O. G. ;
Michler, P. .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2012, 249 (04) :697-701
[37]   Multiuser-to-multiuser entanglement distribution based on 1550 nm polarization-entangled photons [J].
Cao, Dong-Yang ;
Liu, Bi-Heng ;
Wang, Zhao ;
Huang, Yun-Feng ;
Li, Chuan-Feng ;
Guo, Guang-Can .
SCIENCE BULLETIN, 2015, 60 (12) :1128-1132
[38]   Renormalized quantum tomography [J].
D'Ariano, G. M. ;
Sacchi, M. F. .
PHYSICS LETTERS A, 2010, 374 (05) :713-724
[39]   Quantum tomography and nonlocality [J].
Shchukin, Evgeny V. ;
Mancini, Stefano .
PHYSICA SCRIPTA, 2015, 90 (07) :11
[40]   Optimal Quantum Tomography [J].
Bisio, Alessandro ;
Chiribella, Giulio ;
D'Ariano, Giacomo Mauro ;
Facchini, Stefano ;
Perinotti, Paolo .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2009, 15 (06) :1646-1660