Tomography of the quantum state of photons entangled in high dimensions

被引:129
作者
Agnew, Megan [1 ]
Leach, Jonathan [1 ]
McLaren, Melanie [2 ]
Roux, F. Stef [2 ]
Boyd, Robert W. [1 ,3 ]
机构
[1] Univ Ottawa, Dept Phys, Ottawa, ON K1N 6N5, Canada
[2] CSIR Natl Laser Ctr, ZA-0001 Pretoria, South Africa
[3] Univ Rochester, Inst Opt, Rochester, NY 14627 USA
来源
PHYSICAL REVIEW A | 2011年 / 84卷 / 06期
基金
加拿大自然科学与工程研究理事会;
关键词
ANGULAR-MOMENTUM; DENSITY-MATRIX;
D O I
10.1103/PhysRevA.84.062101
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Systems entangled in high dimensions have recently been proposed as important tools for various quantum information protocols, such as multibit quantum key distribution and loophole-free tests of nonlocality. It is therefore important to have precise knowledge of the nature of such entangled quantum states. We tomographically reconstruct the quantum state of the two photons produced by parametric downconversion that are entangled in a d-dimensional orbital angular momentum basis. We determine exactly the density matrix of the entangled two-qudit state with d ranging from 2 to 8. The recording of higher-dimensional states is limited only by the number of data points required and therefore the length of time needed to complete the measurements. We find all the measured states to have fidelities and linear entropies that satisfy the criteria required for a violation of the appropriate high-dimensional Bell inequality. Our results therefore precisely characterize the nature of the entanglement, thus establishing the suitability of such states for applications in quantum information science.
引用
收藏
页数:6
相关论文
共 50 条
[21]   Quadrature histograms in maximum-likelihood quantum state tomography [J].
Silva, J. L. E. ;
Glancy, S. ;
Vasconcelos, H. M. .
PHYSICAL REVIEW A, 2018, 98 (02)
[22]   Enhancing multi-step quantum state tomography by PhaseLift [J].
Lu, Yiping ;
Zhao, Qing .
ANNALS OF PHYSICS, 2017, 384 :198-210
[23]   Semi-Measurement-Device-Independent Quantum State Tomography [J].
Li, Jian ;
Zhu, Jia-Li ;
Gao, Jiang ;
Pang, Zhi-Guang ;
Wang, Qin .
CHINESE PHYSICS LETTERS, 2022, 39 (07)
[24]   Continuous-variable optical quantum-state tomography [J].
Lvovsky, A. I. ;
Raymer, M. G. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :299-332
[25]   QUANTUM STATE TOMOGRAPHY AND QUANTUM LOGICAL OPERATIONS IN A THREE QUBITS NMR QUADRUPOLAR SYSTEM [J].
Araujo-Ferreira, A. G. ;
Brasil, C. A. ;
Soares-Pinto, D. O. ;
Deazevedo, E. R. ;
Bonagamba, T. J. ;
Teles, J. .
INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2012, 10 (02)
[26]   High-dimensional methods for quantum homodyne tomography [J].
Mosco, Nicola ;
Maccone, Lorenzo .
PHYSICS LETTERS A, 2022, 449
[27]   Quantum logical operations for spin 3/2 quadrupolar nuclei monitored by quantum state tomography [J].
Bonk, FA ;
deAzevedo, ER ;
Sarthour, RS ;
Bulnes, JD ;
Freitas, JCC ;
Guimaraes, AP ;
Oliveira, IS ;
Bonagamba, TJ .
JOURNAL OF MAGNETIC RESONANCE, 2005, 175 (02) :226-234
[28]   Quantum-state tomography for optical polarization with arbitrary photon numbers [J].
Klimov, A. B. ;
Romero, J. L. ;
Wallentowitz, S. .
PHYSICAL REVIEW A, 2014, 89 (02)
[29]   Concepts in quantum state tomography and classical implementation with intense light: a tutorial [J].
Toninelli, Ermes ;
Ndagano, Bienvenu ;
Valles, Adam ;
Sephton, Bereneice ;
Nape, Isaac ;
Ambrosio, Antonio ;
Capasso, Federico ;
Padgett, Miles J. ;
Forbes, Andrew .
ADVANCES IN OPTICS AND PHOTONICS, 2019, 11 (01) :67-134
[30]   OPTIMAL LARGE-SCALE QUANTUM STATE TOMOGRAPHY WITH PAULI MEASUREMENTS [J].
Cai, Tony ;
Kim, Donggyu ;
Wang, Yazhen ;
Yuan, Ming ;
Zhou, Harrison H. .
ANNALS OF STATISTICS, 2016, 44 (02) :682-712