Local deformation rings for GL2 and a Breuil-Mezard conjecture when l ≠ p

被引:12
作者
Shotton, Jack [1 ]
机构
[1] Univ Chicago, 5442 S Ellis Ave, Chicago, IL 60615 USA
基金
英国工程与自然科学研究理事会;
关键词
Galois representations; deformation rings; local Langlands; Breuil-Mezard; L-ADIC LIFTS; AUTOMORPHY; REPRESENTATIONS;
D O I
10.2140/ant.2016.10.1437
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We compute the deformation rings of two dimensional mod l representations of Gal((F) over bar /F) with fixed inertial type for l an odd prime, p a prime distinct from l, and F = Q(p) a finite extension. We show that in this setting an analogue of the Breuil-Mezard conjecture holds, relating the special fibres of these deformation rings to the mod l reduction of certain irreducible representations of GL(2) (O-F).
引用
收藏
页码:1437 / 1475
页数:39
相关论文
共 5 条
  • [1] Generic local deformation rings when l ≠ p
    Shotton, Jack
    COMPOSITIO MATHEMATICA, 2022, 158 (04) : 721 - 749
  • [2] On a problem of local-global compatibility modulo p for GL2
    Breuil, Christophe
    Dembele, Lassina
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2014, 692 : 1 - 76
  • [3] L-INVARIANTS AND LOCAL-GLOBAL COMPATIBILITY FOR THE GROUP GL2/F
    Ding, Yiwen
    FORUM OF MATHEMATICS SIGMA, 2016, 4
  • [4] Ordinary p-adic representations of GL2(Qp) and local-global compatibility
    Breuil, Christophe
    Emerton, Matthew
    ASTERISQUE, 2010, (331) : 255 - 315
  • [5] The Iwasawa Main Conjectures for GL2 and derivatives of p-adic L-functions
    Castella, Francesc
    Wan, Xin
    ADVANCES IN MATHEMATICS, 2022, 400