Texture classification using non-Euclidean Minkowski dilation

被引:5
作者
Florindo, Joao B. [1 ,2 ]
Bruno, Odemir M. [1 ]
机构
[1] Univ Sao Paulo, Sao Carlos Inst Phys, Sci Comp Grp, Av Trabalhador Sao Carlense 400, BR-13560970 Sao Carlos, SP, Brazil
[2] Univ Estadual Campinas, Inst Math Stat & Sci Comp, Rua Sergio Buarque Holanda 651, BR-13083859 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Fractal geometry; Texture analysis; Pattern recognition; L-p metric; FRACTAL DIMENSION;
D O I
10.1016/j.physa.2017.10.012
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This study presents a new method to extract meaningful descriptors of gray-scale texture images using Minkowski morphological dilation based on the L-p metric. The proposed approach is motivated by the success previously achieved by Bouligand-Minkowski fractal descriptors on texture classification. In essence, such descriptors are directly derived from the morphological dilation of a three-dimensional representation of the gray-level pixels using the classical Euclidean metric. In this way, we generalize the dilation for different values of p in the L-p metric (Euclidean is a particular case when p = 2) and obtain the descriptors from the cumulated distribution of the distance transform computed over the texture image. The proposed method is compared to other state-of-the-art approaches (such as local binary patterns and textons for example) in the classification of two benchmark data sets (UIUC and Outex). The proposed descriptors outperformed all the other approaches in terms of rate of images correctly classified. The interesting results suggest the potential of these descriptors in this type of task, with a wide range of possible applications to real-world problems. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:189 / 202
页数:14
相关论文
共 25 条
[1]  
[Anonymous], 2006, Digital Image Processing
[2]   PLANT LEAF IDENTIFICATION BASED ON VOLUMETRIC FRACTAL DIMENSION [J].
Backes, Andre Ricardo ;
Casanova, Dalcimar ;
Bruno, Odemir Martinez .
INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2009, 23 (06) :1145-1160
[3]   Fractal dimension applied to plant identification [J].
Bruno, Odemir Martinez ;
Plotze, Rodrigo de Oliveira ;
Falvo, Mauricio ;
de Castro, Mario .
INFORMATION SCIENCES, 2008, 178 (12) :2722-2733
[4]   Plant Identification Based on Leaf Midrib Cross-Section Images Using Fractal Descriptors [J].
da Silva, Nubia Rosa ;
Florindo, Joao Batista ;
Gomez, Maria Cecilia ;
Rossatto, Davi Rodrigo ;
Kolb, Rosana Marta ;
Bruno, Odemir Martinez .
PLOS ONE, 2015, 10 (06)
[5]   Texture evolution and mechanical properties of ion-irradiated Au thin films [J].
Dietiker, Marianne ;
Olliges, Sven ;
Schinhammer, Michael ;
Seita, Matteo ;
Spolenak, Ralph .
ACTA MATERIALIA, 2009, 57 (14) :4009-4021
[6]  
Duda R.O., 1973, Pattern Classification and Scene Analysis, V3
[7]   2D Euclidean distance transform algorithms: A comparative survey [J].
Fabbri, Ricardo ;
Costa, Luciano Da F. ;
Torelli, Julio C. ;
Bruno, Odemir M. .
ACM COMPUTING SURVEYS, 2008, 40 (01)
[8]   Brachiaria species identification using imaging techniques based on fractal descriptors [J].
Florindo, Joao Batista ;
da Silva, Nubia Rosa ;
Romualdo, Liliane Maria ;
da Silva, Fernanda de Fatima ;
de Cerqueira Luz, Pedro Henrique ;
Herling, Valdo Rodrigues ;
Bruno, Odemir Martinez .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2014, 103 :48-54
[9]   Applying the texture analysis for optimizing thermomechanical treatment of high manganese twinning-induced plasticity steel [J].
Haase, Christian ;
Barrales-Mora, Luis A. ;
Roters, Franz ;
Molodov, Dmitri A. ;
Gottstein, Guenter .
ACTA MATERIALIA, 2014, 80 :327-340
[10]   STATISTICAL AND STRUCTURAL APPROACHES TO TEXTURE [J].
HARALICK, RM .
PROCEEDINGS OF THE IEEE, 1979, 67 (05) :786-804