Sliced inverse regression for integrative multi-omics data analysis

被引:2
作者
Jain, Yashita [1 ]
Ding, Shanshan [1 ,2 ]
Qiu, Jing [1 ,2 ]
机构
[1] Univ Delaware, Ctr Bioinformat & Computat Biol, 15 Innovat Way, Newark, DE 19711 USA
[2] Univ Delaware, Dept Appl Econ & Stat, 531 S Coll Ave, Newark, DE 19711 USA
关键词
Integrative genomic analysis; sliced inverse regression; sufficient dimension reduction; MICRORNA EXPRESSION PROFILES; DIMENSION REDUCTION; GENE SELECTION; MESSENGER-RNA; VARIABLE SELECTION; CLASSIFICATION; MICROARRAY; MATRIX; MODEL; BREAST;
D O I
10.1515/sagmb-2018-0028
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Advancement in next-generation sequencing, transcriptomics, proteomics and other high-throughput technologies has enabled simultaneous measurement of multiple types of genomic data for cancer samples. These data together may reveal new biological insights as compared to analyzing one single genome type data. This study proposes a novel use of supervised dimension reduction method, called sliced inverse regression, to multi-omics data analysis to improve prediction over a single data type analysis. The study further proposes an integrative sliced inverse regression method (integrative SIR) for simultaneous analysis of multiple omics data types of cancer samples, including MiRNA, MRNA and proteomics, to achieve integrative dimension reduction and to further improve prediction performance. Numerical results show that integrative analysis of multi-omics data is beneficial as compared to single data source analysis, and more importantly, that supervised dimension reduction methods possess advantages in integrative data analysis in terms of classification and prediction as compared to unsupervised dimension reduction methods.
引用
收藏
页数:13
相关论文
共 62 条
[1]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[2]   Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses [J].
Bhattacharjee, A ;
Richards, WG ;
Staunton, J ;
Li, C ;
Monti, S ;
Vasa, P ;
Ladd, C ;
Beheshti, J ;
Bueno, R ;
Gillette, M ;
Loda, M ;
Weber, G ;
Mark, EJ ;
Lander, ES ;
Wong, W ;
Johnson, BE ;
Golub, TR ;
Sugarbaker, DJ ;
Meyerson, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (24) :13790-13795
[3]   Selecting genes by test statistics [J].
Chen, DC ;
Liu, ZQ ;
Ma, XB ;
Hua, D .
JOURNAL OF BIOMEDICINE AND BIOTECHNOLOGY, 2005, (02) :132-138
[4]   Sufficient dimension reduction in regressions with categorical predictors [J].
Chiaromonte, F ;
Cook, RD ;
Li, B .
ANNALS OF STATISTICS, 2002, 30 (02) :475-497
[5]   Envelopes and partial least squares regression [J].
Cook, R. D. ;
Helland, I. S. ;
Su, Z. .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2013, 75 (05) :851-877
[6]   Foundations for Envelope Models and Methods [J].
Cook, R. Dennis ;
Zhang, Xin .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2015, 110 (510) :599-611
[7]  
Cook RD, 2010, STAT SINICA, V20, P927
[8]   Principal Fitted Components for Dimension Reduction in Regression [J].
Cook, R. Dennis ;
Forzani, Liliana .
STATISTICAL SCIENCE, 2008, 23 (04) :485-501
[9]   ON THE INTERPRETATION OF REGRESSION PLOTS [J].
COOK, RD .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1994, 89 (425) :177-189
[10]  
COOK RD, 1991, J AM STAT ASSOC, V86, P328, DOI 10.2307/2290564