Antimicrobial Chemicals Are Associated with Elevated Antibiotic Resistance Genes in the Indoor Dust Microbiome

被引:120
|
作者
Hartmann, Erica M. [1 ,2 ]
Hickey, Roxana [1 ,2 ]
Hsu, Tiffany [4 ,5 ]
Roman, Clarisse M. Betancourt [1 ,2 ]
Chen, Jing [6 ,7 ]
Schwager, Randall [4 ]
Kline, Jeff [1 ,3 ]
Brown, G. Z. [1 ,3 ]
Halden, Rolf U. [6 ,7 ]
Huttenhower, Curtis [4 ,5 ]
Green, Jessica L. [1 ,2 ]
机构
[1] Univ Oregon, Biol & Built Environm Ctr, Eugene, OR 97403 USA
[2] Univ Oregon, Inst Ecol & Evolut, Eugene, OR 97403 USA
[3] Univ Oregon, Energy Studies Bldg Lab, Eugene, OR 97403 USA
[4] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
[5] Broad Inst MIT & Harvard, Cambridge, MA 02142 USA
[6] Arizona State Univ, Biodesign Ctr Environm Secur, Tempe, AZ 85287 USA
[7] Arizona State Univ, Biodesign Inst, Global Secur Initiat, Tempe, AZ 85287 USA
关键词
MULTIDRUG EFFLUX PUMPS; PSEUDOMONAS-AERUGINOSA; STAPHYLOCOCCUS-AUREUS; GAS-CHROMATOGRAPHY; HUMAN EXPOSURE; BISPHENOL-A; HOUSE-DUST; TRICLOSAN; PARABENS; EXTRACTION;
D O I
10.1021/acs.est.6b00262
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Antibiotic resistance is increasingly widespread, largely due to human influence. Here, we explore the relationship between antibiotic resistance genes and the antimicrobial chemicals triclosan, triclocarban, and methyl-, ethyl-, propyl-, and butylparaben in the dust microbiome. Dust samples from a mixed-use athletic and educational facility were subjected to microbial and chemical analyses using a combination of 16S rRNA amplicon sequencing, shotgun metagenome sequencing, and liquid chromatography tandem mass spectrometry. The dust resistome was characterized by identifying antibiotic resistance genes annotated in the Comprehensive Antibiotic Resistance Database (CARD) from the metagenomes of each sample using the Short, Better Representative Extract Data set (ShortBRED). The three most highly abundant antibiotic resistance genes were tet(W), blaSRT-1, and erm(B). The complete dust resistome was then compared against the measured concentrations of antimicrobial chemicals, which for triclosan ranged from 0.5 to 1970 ng/g dust. We observed six significant positive associations between the concentration of an antimicrobial chemical and the relative abundance of an antibiotic resistance gene, including one between the ubiquitous antimicrobial triclosan and erm(X), a 23S rRNA methyltransferase implicated in resistance to several antibiotics. This study is the first to look for an association between antibiotic resistance genes and antimicrobial chemicals in dust.
引用
收藏
页码:9807 / 9815
页数:9
相关论文
共 30 条
  • [1] Antimicrobial Chemicals Associate with Microbial Function and Antibiotic Resistance Indoors
    Fahimipour, Ashkaan K.
    Ben Maamar, Sarah
    McFarland, Alexander G.
    Blaustein, Ryan A.
    Chen, Jing
    Glawe, Adam J.
    Kline, Jeff
    Green, Jessica L.
    Halden, Rolf U.
    Van Den Wymelenberg, Kevin
    Huttenhower, Curtis
    Hartmann, Erica M.
    MSYSTEMS, 2018, 3 (06)
  • [2] House dust microbiome differentiation and phage-mediated antibiotic resistance and virulence dissemination in the presence of endocrine-disrupting chemicals and pharmaceuticals
    Shicong Du
    Huiju Lin
    Qiong Luo
    Chung Ling Man
    Sze Han Lai
    Kin Fai Ho
    Kenneth M. Y. Leung
    Patrick K. H. Lee
    Microbiome, 13 (1)
  • [3] Mobilizable antibiotic resistance genes are present in dust microbial communities
    Ben Maamar, Sarah
    Glawe, Adam J.
    Brown, Taylor K.
    Hellgeth, Nancy
    Hu, Jinglin
    Wang, Ji-Ping
    Huttenhower, Curtis
    Hartmann, Erica M.
    PLOS PATHOGENS, 2020, 16 (01)
  • [4] Triclosan Promotes Conjugative Transfer of Antibiotic Resistance Genes to Opportunistic Pathogens in Environmental Microbiome
    Lu, Ji
    Yu, Zhigang
    Ding, Pengbo
    Guo, Jianhua
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2022, 56 (21) : 15108 - 15119
  • [5] Mechanisms of emerging resistance associated with non-antibiotic antimicrobial agents: a state-of-the-art review
    Baig, Mirza Ilyas Rahim
    Kadu, Pramod
    Bawane, Pradip
    Nakhate, Kartik T.
    Yele, Santosh
    Ojha, Shreesh
    Goyal, Sameer N.
    JOURNAL OF ANTIBIOTICS, 2023, 76 (11) : 629 - 641
  • [6] Tetracycline Resistance and Class 1 Integron Genes Associated with Indoor and Outdoor Aerosols
    Ling, Alison L.
    Pace, Norman R.
    Hernandez, Mark T.
    LaPara, Timothy M.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2013, 47 (09) : 4046 - 4052
  • [7] Using WGS to identify antibiotic resistance genes and predict antimicrobial resistance phenotypes in MDR Acinetobacter baumannii in Tanzania
    Kumburu, Happiness H.
    Sonda, Tolbert
    van Zwetselaar, Marco
    Leekitcharoenphon, Pimlapas
    Lukjancenko, Oksana
    Mmbaga, Blandina T.
    Alifrangis, Michael
    Lund, Ole
    Aarestrup, Frank M.
    Kibiki, Gibson S.
    JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 2019, 74 (06) : 1484 - 1493
  • [8] Bacteria tolerant to colistin in coastal marine environment: Detection, microbiome diversity and antibiotic resistance genes' repertoire
    Samanic, Ivica
    Kalinic, Hrvoje
    Fredotovic, Zeljana
    Dzelalija, Mia
    Bungur, Ana-Marija
    Maravic, Ana
    CHEMOSPHERE, 2021, 281
  • [9] Spatiotemporal distribution of the planktonic microbiome and antibiotic resistance genes in a typical urban river contaminated by macrolide antibiotics
    Yang, Chuanmao
    Yan, Shiwei
    Zhang, Baihuan
    Yao, Xiunan
    Mo, Jiezhang
    Rehman, Fozia
    Guo, Jiahua
    ENVIRONMENTAL RESEARCH, 2024, 262
  • [10] Co-Carriage of Metal and Antibiotic Resistance Genes in Sewage Associated Staphylococci
    Amirsoleimani, Atena
    Brion, Gail
    Francois, Patrice
    GENES, 2021, 12 (10)