Convergence rates in nonparametric estimation of level sets

被引:46
作者
Baíllo, A
Cuesta-Albertos, JA
Cuevas, A
机构
[1] Univ Autonoma Madrid, Fac Ciencias, Dept Matemat, E-28049 Madrid, Spain
[2] Univ Cantabria, Dept Matemat Aplicada Estadist & Computac, Santander 39071, Spain
关键词
convergence rates; level sets; set estimation; false alarm probability; kernel density estimates;
D O I
10.1016/S0167-7152(01)00006-2
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A level set of type {f less than or equal to c} (where f is a density on R-d and c is a positive value) can be estimated by its empirical version {(f) over cap (n) less than or equal to c}, where (f) over cap (n) denotes a nonparametric (kernel) density estimator. We analyze, from two different points of view, the asymptotic behavior of the probability content of {(f) over cap (n) less than or equal to c}. Our results are motivated by applications in cluster analysis and outlier detection. Although the mathematical treatment is quite different in both cases, the conclusions are basically coincident. Roughly speaking, we show that the convergence rates are at most of type n(-1/(d+2)). For the univariate case d = 1 this would be in the same spirit of the classical cube-root results found in some nonparametric setups. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:27 / 35
页数:9
相关论文
共 18 条
  • [1] [Anonymous], 1968, An introduction to probability theory and its applications
  • [2] Set estimation and nonparametric detection
    Baíllo, A
    Cuevas, A
    Justel, A
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2000, 28 (04): : 765 - 782
  • [3] ASYMPTOTIC ESTIMATE OF PROBABILITY OF MISCLASSIFICATION FOR DISCRIMINANT RULES BASED ON DENSITY ESTIMATES
    CHANDA, KC
    RUYMGAART, FH
    [J]. STATISTICS & PROBABILITY LETTERS, 1989, 8 (01) : 81 - 88
  • [4] Choudhuri N, 1998, ANN STAT, V26, P2104
  • [5] Estimating the number of clusters
    Cuevas, A
    Febrero, M
    Fraiman, R
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2000, 28 (02): : 367 - 382
  • [6] Cuevas A, 1997, ANN STAT, V25, P2300
  • [7] A NEW GENERAL-METHOD FOR CONSTRUCTING CONFIDENCE SETS IN ARBITRARY DIMENSIONS - WITH APPLICATIONS
    DASGUPTA, A
    GHOSH, JK
    ZEN, MM
    [J]. ANNALS OF STATISTICS, 1995, 23 (04) : 1408 - 1432
  • [8] THE IDENTIFICATION OF MULTIPLE OUTLIERS
    DAVIES, L
    GATHER, U
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (423) : 782 - 792
  • [9] DETECTION OF ABNORMAL-BEHAVIOR VIA NONPARAMETRIC-ESTIMATION OF THE SUPPORT
    DEVROYE, L
    WISE, GL
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1980, 38 (03) : 480 - 488
  • [10] ON THE LAW OF THE LOGARITHM FOR DENSITY ESTIMATORS
    HALL, P
    [J]. STATISTICS & PROBABILITY LETTERS, 1990, 9 (03) : 237 - 240