Cell2location maps fine-grained cell types in spatial transcriptomics

被引:491
作者
Kleshchevnikov, Vitalii [1 ]
Shmatko, Artem [1 ,2 ]
Dann, Emma [1 ]
Aivazidis, Alexander [1 ]
King, Hamish W. [1 ,3 ]
Li, Tong [1 ]
Elmentaite, Rasa [1 ]
Lomakin, Artem [4 ,5 ]
Kedlian, Veronika [1 ]
Gayoso, Adam [6 ]
Jain, Mika Sarkin [1 ,7 ]
Park, Jun Sung [1 ,4 ]
Ramona, Lauma [1 ]
Tuck, Elizabeth [1 ]
Arutyunyan, Anna [1 ]
Vento-Tormo, Roser [1 ]
Gerstung, Moritz [4 ,5 ]
James, Louisa [3 ]
Stegle, Oliver [1 ,5 ,8 ]
Bayraktar, Omer Ali [1 ]
机构
[1] Wellcome Sanger Inst, Cambridge, England
[2] Moscow State Univ, Moscow, Russia
[3] Queen Mary Univ London, Ctr Immunobiol, Blizard Inst, London, England
[4] European Bioinformat Inst EMBL EBI, European Mol Biol Lab, Hinxton, England
[5] European Mol Biol Lab, Genome Biol Unit, Heidelberg, Germany
[6] Univ Calif Berkeley, Ctr Computat Biol, Berkeley, CA 94720 USA
[7] Univ Cambridge, Dept Phys, Cavendish Lab, Theory Condensed Matter, Cambridge, England
[8] German Canc Res Ctr, Div Computat Genom & Syst Genet, Heidelberg, Germany
基金
英国惠康基金;
关键词
RNA-SEQ; TISSUE; RECONSTRUCTION; EXPRESSION; TAXONOMY;
D O I
10.1038/s41587-021-01139-4
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Spatial transcriptomic technologies promise to resolve cellular wiring diagrams of tissues in health and disease, but comprehensive mapping of cell types in situ remains a challenge. Here we present cell2location, a Bayesian model that can resolve fine-grained cell types in spatial transcriptomic data and create comprehensive cellular maps of diverse tissues. Cell2location accounts for technical sources of variation and borrows statistical strength across locations, thereby enabling the integration of single-cell and spatial transcriptomics with higher sensitivity and resolution than existing tools. We assessed cell2location in three different tissues and show improved mapping of fine-grained cell types. In the mouse brain, we discovered fine regional astrocyte subtypes across the thalamus and hypothalamus. In the human lymph node, we spatially mapped a rare pre-germinal center B cell population. In the human gut, we resolved fine immune cell populations in lymphoid follicles. Collectively, our results present cell2location as a versatile analysis tool for mapping tissue architectures in a comprehensive manner. A Bayesian model maps the location of cell types in tissues with higher sensitivity.
引用
收藏
页码:661 / +
页数:17
相关论文
共 64 条
[1]   AutoGeneS: Automatic gene selection using multi-objective optimization for RNA-seq deconvolution [J].
Aliee, Hananeh ;
Theis, Fabian .
CELL SYSTEMS, 2021, 12 (07) :706-+
[2]   Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography [J].
Andersson, Alma ;
Bergenstrahle, Joseph ;
Asp, Michaela ;
Bergenstrahle, Ludvig ;
Jurek, Aleksandra ;
Fernandez Navarro, Jose ;
Lundeberg, Joakim .
COMMUNICATIONS BIOLOGY, 2020, 3 (01)
[3]  
[Anonymous], V1_Human_Lymph_Node-Datasets-Spatial Gene Expression-Official 10x Genomics Support
[4]   Identification of region-specific astrocyte subtypes at single cell resolution [J].
Batiuk, Mykhailo Y. ;
Martirosyan, Araks ;
Wahis, Jerome ;
de Vin, Filip ;
Marneffe, Catherine ;
Kusserow, Carola ;
Koeppen, Jordan ;
Viana, Joao Filipe ;
Oliveira, Joao Filipe ;
Voet, Thierry ;
Ponting, Chris P. ;
Belgard, T. Grant ;
Holt, Matthew G. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[5]   Astrocyte layers in the mammalian cerebral cortex revealed by a single-cell in situ transcriptomic map [J].
Bayraktar, Omer Ali ;
Bartels, Theresa ;
Holmqvist, Staffan ;
Kleshchevnikov, Vitalii ;
Martirosyan, Araks ;
Polioudakis, Damon ;
Ben Haim, Lucile ;
Young, Adam M. H. ;
Batiuk, Mykhailo Y. ;
Prakash, Kirti ;
Brown, Alexander ;
Roberts, Kenny ;
Paredes, Mercedes F. ;
Kawaguchi, Riki ;
Stockley, John H. ;
Sabeur, Khalida ;
Chang, Sandra M. ;
Huang, Eric ;
Hutchinson, Peter ;
Ullian, Erik M. ;
Hemberg, Martin ;
Coppola, Giovanni ;
Holt, Matthew G. ;
Geschwind, Daniel H. ;
Rowitch, David H. .
NATURE NEUROSCIENCE, 2020, 23 (04) :500-+
[6]  
Ben Haim L, 2017, NAT REV NEUROSCI, V18, P31, DOI [10.1038/nm.2016.159, 10.1038/nrn.2016.159]
[7]   ilastik: interactive machine learning for (bio) image analysis [J].
Berg, Stuart ;
Kutra, Dominik ;
Kroeger, Thorben ;
Straehle, Christoph N. ;
Kausler, Bernhard X. ;
Haubold, Carsten ;
Schiegg, Martin ;
Ales, Janez ;
Beier, Thorsten ;
Rudy, Markus ;
Eren, Kemal ;
Cervantes, Jaime I. ;
Xu, Buote ;
Beuttenmueller, Fynn ;
Wolny, Adrian ;
Zhang, Chong ;
Koethe, Ullrich ;
Hamprecht, Fred A. ;
Kreshuk, Anna .
NATURE METHODS, 2019, 16 (12) :1226-1232
[8]  
Bingham E, 2019, J MACH LEARN RES, V20
[9]   Robust decomposition of cell type mixtures in spatial transcriptomics [J].
Cable, Dylan M. ;
Murray, Evan ;
Zou, Luli S. ;
Goeva, Aleksandrina ;
Macosko, Evan Z. ;
Chen, Fei ;
Irizarry, Rafael A. .
NATURE BIOTECHNOLOGY, 2022, 40 (04) :517-+
[10]   Neural Circuit-Specialized Astrocytes: Transcriptomic, Proteomic, Morphological, and Functional Evidence [J].
Chai, Hua ;
Diaz-Castro, Blanca ;
Shigetomi, Eiji ;
Monte, Emma ;
Octeau, J. Christopher ;
Yu, Xinzhu ;
Cohn, Whitaker ;
Rajendran, Pradeep S. ;
Vondriska, Thomas M. ;
Whitelegge, Julian P. ;
Coppola, Giovanni ;
Khakh, Baljit S. .
NEURON, 2017, 95 (03) :531-+