Another greedy heuristic for the constrained forest problem

被引:7
作者
Laszlo, M [1 ]
Mukherjee, S [1 ]
机构
[1] Nova SE Univ, Grad Sch Comp & Informat Sci, Ft Lauderdale, FL 33314 USA
关键词
constrained forest problem; tree partitioning; minimum spanning forests; greedy heuristics;
D O I
10.1016/j.orl.2004.11.010
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The constrained forest problem seeks a minimum-weight spanning forest in an undirected edge-weighted graph such that each tree spans at least a specified number of vertices. We present a greedy heuristic for this NP-hard problem, whose solutions are at least as good as, and often better than, those produced by the best-known 2-approximate heuristic. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:629 / 633
页数:5
相关论文
共 6 条
[1]   On the complexity of graph tree partition problems [J].
Cordone, R ;
Maffioli, F .
DISCRETE APPLIED MATHEMATICS, 2004, 134 (1-3) :51-65
[2]  
DANDEKAR RA, 2002, LECT NOTES COMPUTER, V2316
[3]   Practical data-oriented microaggregation for statistical disclosure control [J].
Domingo-Ferrer, J ;
Mateo-Sanz, JM .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2002, 14 (01) :189-201
[4]  
IMELINSKA C, 1993, OPER RES LETT, V14, P65
[5]   An efficient k-means clustering algorithm:: Analysis and implementation [J].
Kanungo, T ;
Mount, DM ;
Netanyahu, NS ;
Piatko, CD ;
Silverman, R ;
Wu, AY .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2002, 24 (07) :881-892
[6]  
LASZLO M, MINIMUM SPANNING TRE