Local behavior of positive solutions to a nonlinear biharmonic equation near isolated singularities

被引:0
作者
Wu, Ke [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
关键词
Rigidity results; Asymptotic behavior; Removable singularity; ELLIPTIC-EQUATIONS; CLASSIFICATION; SYMMETRY;
D O I
10.1016/j.na.2021.112594
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the asymptotic behavior of positive solutions of the biharmonic equation Delta(2)u = u(p) in B-2\{0) with an isolated singularity, where the punctured ball B-2\{0} subset of R-n with n > 5 and p > (n + 4)/(n - 4). We classify isolated singularities of positive solutions and describe the asymptotic behavior of positive singular solutions without the sign assumption for -Delta u. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:15
相关论文
共 19 条
[2]   LOCAL BEHAVIOR OF SOLUTIONS OF SOME ELLIPTIC-EQUATIONS [J].
AVILES, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 108 (02) :177-192
[3]   NONLINEAR ELLIPTIC-EQUATIONS ON COMPACT RIEMANNIAN-MANIFOLDS AND ASYMPTOTICS OF EMDEN EQUATIONS [J].
BIDAUTVERON, MF ;
VERON, L .
INVENTIONES MATHEMATICAE, 1991, 106 (03) :489-539
[4]   ASYMPTOTIC SYMMETRY AND LOCAL BEHAVIOR OF SEMILINEAR ELLIPTIC-EQUATIONS WITH CRITICAL SOBOLEV GROWTH [J].
CAFFARELLI, LA ;
GIDAS, B ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (03) :271-297
[5]   CLASSIFICATION OF POSITIVE SINGULAR SOLUTIONS TO A NONLINEAR BIHARMONIC EQUATION WITH CRITICAL EXPONENT [J].
Frank, Rupert L. ;
Koenig, Tobias .
ANALYSIS & PDE, 2019, 12 (04) :1101-1113
[6]   Radial entire solutions for supercritical biharmonic equations [J].
Gazzola, F ;
Grunau, HC .
MATHEMATISCHE ANNALEN, 2006, 334 (04) :905-936
[7]   GLOBAL AND LOCAL BEHAVIOR OF POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS [J].
GIDAS, B ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1981, 34 (04) :525-598
[8]  
Gilbarg Davis, 1982, ELLIPTIC PARTIAL DIF, Vsecond
[9]   Radial Symmetry of Entire Solutions of a Biharmonic Equation with Supercritical Exponent [J].
Guo, Zongming ;
Wei, Long .
ADVANCED NONLINEAR STUDIES, 2019, 19 (02) :291-316
[10]   ON NONRADIAL SINGULAR SOLUTIONS OF SUPERCRITICAL BIHARMONIC EQUATIONS [J].
Guo, Zongming ;
Wei, Juncheng ;
Yang, Wen .
PACIFIC JOURNAL OF MATHEMATICS, 2016, 284 (02) :395-430