Existence of nontrivial solutions for quasilinear elliptic equations at critical growth

被引:8
作者
Li, Zhouxin [1 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
基金
中国博士后科学基金;
关键词
Quasilinear elliptic equation; Natural growth; Critical growth; CRITICAL-POINT THEORY; SOLITON-SOLUTIONS; SCHRODINGER-EQUATIONS;
D O I
10.1016/j.amc.2011.05.053
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence of nontrivial weak solutions for the following quasilinear elliptic equation with natural growth -D-j(a(ji)(x, u)D(i)u) + 1/2 partial derivative(s)a(ij)(x, u)D(i)uD(j)u = f(x, u), in a bounded smooth domain Omega subset of R-N, where a(ij)(x, u) are functions possibly unbounded with respect to u. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:76 / 87
页数:12
相关论文
共 30 条
  • [1] [Anonymous], TOP METH NONLINEAR A
  • [2] [Anonymous], 1993, Topol. Methods Nonlinear Anal., DOI DOI 10.12775/TMNA.1993.012
  • [3] [Anonymous], 1995, Topol. Methods Nonlinear Anal.
  • [4] Critical points for multiple integrals of the calculus of variations
    Arcoya, D
    Boccardo, L
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1996, 134 (03) : 249 - 274
  • [5] Some remarks on critical point theory for nondifferentiable functionals
    Arcoya, David
    Boccardo, Lucio
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1999, 6 (01): : 79 - 100
  • [6] Existence and multiplicity results for quasilinear elliptic differential systems
    Arioli, G
    Gazzola, F
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2000, 25 (1-2) : 125 - 153
  • [7] Quasilinear elliptic equations at critical growth
    Arioli, Gianni
    Gazzola, Filippo
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1998, 5 (01): : 83 - 97
  • [8] CANINO A, 1995, NATO ASI SERIES
  • [9] A CRITICAL-POINT THEORY FOR NONSMOOTH FUNCTIONALS
    DEGIOVANNI, M
    MARZOCCHI, M
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 1994, 167 : 73 - 100
  • [10] QUASILINEAR SCHRODINGER EQUATIONS INVOLVING CONCAVE AND CONVEX NONLINEARITIES
    do O, Joao Marcos
    Severo, Uberlandio
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2009, 8 (02) : 621 - 644