AN EFFICIENT VIDEO CODING TECHNIQUE USING A NOVEL NON-PARAMETRIC BACKGROUND MODEL

被引:0
|
作者
Chakraborty, Subrata [1 ]
Paul, Manoranjan [1 ]
Murshed, Manzur [2 ]
Ali, Mortuza [2 ]
机构
[1] Charles Sturt Univ, Sch Comp & Math, Bathurst, NSW 2795, Australia
[2] Federat Univ, Sch Informat Technol, Gippsland, Vic 3842, Australia
来源
2014 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO WORKSHOPS (ICMEW) | 2014年
关键词
Video coding; Background model; Non-parametric model; Coding efficiency; Coding performance; DENSITY-ESTIMATION; ALGORITHM; FRAMES; IMAGE; COMPENSATION; PREDICTION; ALLOCATION; H.264/AVC; SELECTION;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Video coding technique with a background frame, extracted from mixture of Gaussian (MoG) based background modeling, provides better rate distortion performance by exploiting coding efficiency in uncovered background areas compared to the latest video coding standard. However, it suffers from high computation time, low coding efficiency for dynamic videos, and prior knowledge requirement of video content. In this paper, we present a novel adaptive weighted non-parametric (WNP) background modeling technique and successfully embed it into HEVC video coding standard. Being non-parametric (NP), the proposed technique naturally exhibits superior performance in dynamic background scenarios compared to MoG-based technique without a priori knowledge of video data distribution. In addition, the WNP technique significantly reduces noise-related drawbacks of existing NP techniques to provide better quality video coding with much lower computation time as demonstrated through extensive comparative studies against NP, MoG and HEVC techniques.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Adaptive weighted non-parametric background model for efficient video coding
    Chakraborty, Subrata
    Paul, Manoranjan
    Murshed, Manzur
    Ali, Mortuza
    NEUROCOMPUTING, 2017, 226 : 35 - 45
  • [2] A Novel Video Coding Scheme using a Scene Adaptive Non-Parametric Background Model
    Chakraborty, Subrata
    Paul, Manoranjan
    Murshed, Manzur
    Ali, Mortuza
    2014 IEEE 16TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP), 2014,
  • [3] Using Non-parametric Count Model for Credit Scoring
    Sami Mestiri
    Abdeljelil Farhat
    Journal of Quantitative Economics, 2021, 19 : 39 - 49
  • [4] Using Non-parametric Count Model for Credit Scoring
    Mestiri, Sami
    Farhat, Abdeljelil
    JOURNAL OF QUANTITATIVE ECONOMICS, 2021, 19 (01) : 39 - 49
  • [5] Efficient video coding using optimal compression plane and background modelling
    Paul, M.
    IET IMAGE PROCESSING, 2012, 6 (09) : 1311 - 1318
  • [6] SOMPNN: an efficient non-parametric model for predicting transmembrane helices
    Yu, Dong-Jun
    Shen, Hong-Bin
    Yang, Jing-Yu
    AMINO ACIDS, 2012, 42 (06) : 2195 - 2205
  • [7] A Novel Video Coding Framework with Tensor Representation for Efficient Video Streaming
    Athisayamani, Suganya
    Dejey, Dharma
    WIRELESS PERSONAL COMMUNICATIONS, 2019, 109 (04) : 2699 - 2717
  • [8] SOMPNN: an efficient non-parametric model for predicting transmembrane helices
    Dong-Jun Yu
    Hong-Bin Shen
    Jing-Yu Yang
    Amino Acids, 2012, 42 : 2195 - 2205
  • [9] Predicting Nocturnal Hypoglycemia Using a Non-Parametric Insulin Action Model
    Stahl, Fredrik
    Johansson, Rolf
    Olsson, Mona Landin
    2015 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC 2015): BIG DATA ANALYTICS FOR HUMAN-CENTRIC SYSTEMS, 2015, : 1583 - 1588
  • [10] Non-parametric estimation of a multiscale CHARN model using SVR
    Safari, Amir
    Seese, Detlef
    QUANTITATIVE FINANCE, 2009, 9 (01) : 105 - 121