Faulhaber and Bernoulli polynomials and solitons

被引:22
作者
Fairlie, DB
Veselov, AP
机构
[1] Univ Durham, Dept Math Sci, Durham DH1 3LE, England
[2] Loughborough Univ Technol, Dept Math Sci, Loughborough LE11 3TU, Leics, England
[3] LD Landau Theoret Phys Inst, Moscow 117940, Russia
来源
PHYSICA D | 2001年 / 152卷 / 152-153期
关键词
Faulhaber polynomial; Bernoulli polynomial; soliton; KdV equation;
D O I
10.1016/S0167-2789(01)00157-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A relation between the classical Faulhaber and Bernoulli polynomials and the theory of the Korteweg-de Vries equation is established. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:47 / 50
页数:4
相关论文
共 10 条
[1]  
DRAZIN PG, 1991, SOLITONS INTRO
[2]  
Erdelyi A, 1953, HIGHER TRANSCENDENTA
[3]  
FAULHABER J, 1631, ACAD ALGEBRA
[4]  
Jacobi C. G. J., 1834, J REINE ANGEW MATH, V12, P263
[5]   FAULHABER,JOHANN AND SUMS OF POWERS [J].
KNUTH, DE .
MATHEMATICS OF COMPUTATION, 1993, 61 (203) :277-294
[6]   KORTEWEG-DEVRIES EQUATION AND GENERALIZATIONS .5. UNIQUENESS AND NONEXISTENCE OF POLYNOMIAL CONSERVATION LAWS [J].
KRUSKAL, MD ;
MIURA, RM ;
GARDNER, CS ;
ZABUSKY, NJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1970, 11 (03) :952-&
[7]   KORTEWEG-DE VRIES EQUATION AND GENERALIZATIONS .2. EXISTENCE OF CONSERVATION LAWS AND CONSTANTS OF MOTION [J].
Miura, RM ;
GARDNER, CS ;
KRUSKAL, MD .
JOURNAL OF MATHEMATICAL PHYSICS, 1968, 9 (08) :1204-+
[8]  
Novikov S., 1984, Theory of solitons: The inverse scattering method
[9]  
Whittaker E. T., 1963, Cambridge Math. Lib.
[10]  
ZAKHAROV VE, 1971, FUNKT ANAL PRIL, V5, P18