Three-dimensional Luneburg lens at optical frequencies

被引:105
作者
Zhao, Yuan-Yuan [1 ,2 ,4 ]
Zhang, Yong-Liang [1 ,2 ]
Zheng, Mei-Ling [1 ,2 ]
Dong, Xian-Zi [1 ,2 ]
Duan, Xuan-Ming [1 ,2 ,3 ]
Zhao, Zhen-Sheng [1 ,2 ]
机构
[1] Chinese Acad Sci, Lab Organ NanoPhoton, Tech Inst Phys & Chem, 29 Zhongguancun East Rd, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Lab Bioinspired Smart Interface Sci, Tech Inst Phys & Chem, 29 Zhongguancun East Rd, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Chongqing Inst Green & Intelligent Technol, 266 Fangzheng Ave, Chongqing 400714, Peoples R China
[4] Univ Chinese Acad Sci, 29 Zhongguancun East Rd, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
3D Luneburg lens; femtosecond laser direct writing; gradient refractive index; 3D ideal focus; metamaterials; BROAD-BAND; PLASMONIC LUNEBURG; GRADIENT; CLOAK; LIGHT;
D O I
10.1002/lpor.201600051
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A Luneburg lens is a fascinating gradient refractive index (GRIN) lens that can focus parallel light on a perfect point without aberration in geometrical optics. Constructing a three-dimensional (3D) Luneburg lens at optical frequencies is a challenging task due to the difficulty of fabricating the desired GRIN materials. Here, we present the practical implementation of a 3D Luneburg lens at optical frequencies. Such a 3D Luneburg lens is designed with GRIN 3D simple cubic metamaterial structures, and fabricated with dielectric metamaterials by femtosecond laser direct writing in the commercial negative-photoresist IP-L. Simulated and experimental results exhibit an interesting 3D ideal focus for the infrared light. The protocol for developing the 3D Luneburg lens with ideal focus would prompt the potential applications in integrated light-coupled devices and lab-on-chip integrated biological sensors based on infrared light.
引用
收藏
页码:665 / 672
页数:8
相关论文
共 48 条
  • [1] Cai W, 2010, OPTICAL METAMATERIALS: FUNDAMENTALS AND APPLICATIONS, P1, DOI 10.1007/978-1-4419-1151-3
  • [2] Design and Experimental Realization of a Broadband Transformation Media Field Rotator at Microwave Frequencies
    Chen, Huanyang
    Hou, Bo
    Chen, Shuyu
    Ao, Xianyu
    Wen, Weijia
    Chan, C. T.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (18)
  • [3] An omnidirectional electromagnetic absorber made of metamaterials
    Cheng, Qiang
    Cui, Tie Jun
    Jiang, Wei Xiang
    Cai, Ben Geng
    [J]. NEW JOURNAL OF PHYSICS, 2010, 12
  • [4] Chih-Hung Hsieh, 2013, 2013 International Conference on Optical MEMS and Nanophotonics (OMN), P35, DOI 10.1109/OMN.2013.6659046
  • [5] Luneburg lens in silicon photonics
    Di Falco, Andrea
    Kehr, Susanne C.
    Leonhardt, Ulf
    [J]. OPTICS EXPRESS, 2011, 19 (06): : 5156 - 5162
  • [6] Thin metamaterial Luneburg lens for surface waves
    Dockrey, J. A.
    Lockyear, M. J.
    Berry, S. J.
    Horsley, S. A. R.
    Sambles, J. R.
    Hibbins, A. P.
    [J]. PHYSICAL REVIEW B, 2013, 87 (12)
  • [7] Improving spatial resolution and reducing aspect ratio in multiphoton polymerization nanofabrication
    Dong, Xian-Zi
    Zhao, Zhen-Sheng
    Duan, Xuan-Ming
    [J]. APPLIED PHYSICS LETTERS, 2008, 92 (09)
  • [8] Graded photonic quasicrystals
    Dyachenko, Pavel N.
    Pavelyev, Vladimir S.
    Soifer, Victor A.
    [J]. OPTICS LETTERS, 2012, 37 (12) : 2178 - 2180
  • [9] Near Field Investigation of a Plasmonic Luneburg Lens
    Ehlermann, Jens
    Vu, Hoan
    Mendach, Stefan
    [J]. PLASMONICS, 2015, 10 (06) : 1513 - 1518
  • [10] Three-Dimensional Invisibility Cloak at Optical Wavelengths
    Ergin, Tolga
    Stenger, Nicolas
    Brenner, Patrice
    Pendry, John B.
    Wegener, Martin
    [J]. SCIENCE, 2010, 328 (5976) : 337 - 339