Cohomological dimension of locally connected compacta

被引:3
作者
Dydak, J [1 ]
Koyama, A
机构
[1] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
[2] Osaka Kyoiku Univ, Div Math Sci, Osaka 5828582, Japan
关键词
cohomological dimension; cohomology locally n-connected; ANR; principal ideal domain;
D O I
10.1016/S0166-8641(00)00018-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate the cohomological dimension of cohomologically locally connected compacta with respect to principal ideal domains. We show the cohomological dimension version of the Borsuk-Siecklucki theorem: for every uncountable family {K-alpha}(alpha is an element ofA) of n-dimensional closed subsets of an n-dimensional ANR-compactum, there exist alpha not equal beta such that dim(K(alpha)boolean ANDK(beta)) = n. As its consequences we shall investigate the equality of cohomological dimension and strong cohomological dimension and give a characterization of cohomological dimension by using a special base. Furthermore, we shall discuss the relation between cohomological dimension and dimension of cohomologically locally connected spaces. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:39 / 50
页数:12
相关论文
共 15 条
[1]  
BORSUK K, 1961, B POLISH ACAD SCI, V9, P685
[2]  
Bredon G. E., 1997, SHEAF THEORY
[3]   HOMOLOGICAL DIMENSION THEORY [J].
DRANISHNIKOV, AN .
RUSSIAN MATHEMATICAL SURVEYS, 1988, 43 (04) :11-63
[4]  
DRANISHNIKOV AN, 1996, P STEKLOV I, V212, P61
[5]  
DRANISHNIKOV AN, IN PRESS T AM MATH S
[6]  
DRANISHNIKOV AN, 1998, BASIC ELEMENTS COHOM
[7]   Hereditarily aspherical compacta [J].
Dydak, J ;
Yokoi, K .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (06) :1933-1940
[8]   COHOMOLOGICAL DIMENSION AND METRIZABLE-SPACES [J].
DYDAK, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 337 (01) :219-234
[9]   INFINITE DIMENSIONAL COMPACTA HAVING COHOMOLOGICAL DIMENSION-2 - AN APPLICATION OF THE SULLIVAN CONJECTURE [J].
DYDAK, J ;
WALSH, JJ .
TOPOLOGY, 1993, 32 (01) :93-104
[10]  
DYER E, 1959, FUND MATH, V47, P141