Computational and Experimental Investigation of the Electrochemical Stability and Li-Ion Conduction Mechanism of LiZr2(PO4)3

被引:70
作者
Noda, Yusuke [1 ]
Nakano, Koki [2 ]
Takeda, Hayami [2 ,3 ]
Kotobuki, Masashi [4 ,5 ]
Lu, Li [4 ,5 ]
Nakayama, Masanobu [1 ,2 ,3 ,6 ]
机构
[1] Natl Inst Mat Sci, Res & Serv Div Mat Data & Integrated Syst MaDIS, Ctr Mat Res Informat Integrat CMI2, 1-2-1 Sengen, Tsukuba, Ibaraki 3050047, Japan
[2] Nagoya Inst Technol, Frontier Res Inst Mat Sci, Nagoya, Aichi 4668555, Japan
[3] Kyoto Univ, Elements Strategy Initiat Catalysts & Batteries, 1-30 Goryo Ohara, Kyoto 6158245, Japan
[4] Natl Univ Singapore, Dept Mech Engn, 9 Engn Dr 1, Singapore 117575, Singapore
[5] Natl Univ Singapore Suzhou Res Inst, Dushu Lake Sci & Educ Innovat Dist, Suzhou 215123, Peoples R China
[6] Natl Inst Mat Sci, Global Res Ctr Environm & Energy Based Nanomat Sc, 1-1 Namiki, Tsukuba, Ibaraki 3050047, Japan
基金
日本科学技术振兴机构;
关键词
INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; AB-INITIO; NEUTRON-DIFFRACTION; CRYSTAL-STRUCTURES; LITHIUM LOCATION; NASICON; ELECTROLYTES; TRANSPORT; METAL;
D O I
10.1021/acs.chemmater.7b01703
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid electrolytes possessing sufficient ionic conductivity and electrochemical stability are urgently needed for the fabrication of all-solid-state Li-ion batteries (LIBs). In this study, we focus on a solid-state oxide electrolyte LiZr2(PO4)(3) (LZP), which has NASICON structure and electrochemically stable Zr4+ ions. Using density functional theory (DFT) to calculate the electrochemical window of LZP, we find that it is unstable against Li metal, in accordance with our experimental results. The Li-ion transport is investigated using first-principles molecular dynamics (FPMD) simulations. The calculated Li-ion conductivity at room temperature (5.0 x 10(-6) S/cm) and the activation energy for Li-ion diffusion (0.43 eV) are in fair agreement with experimental results. The mechanism of Li-ion conduction in LZP is revealed by analyzing the Li-ion trajectories in the FPMD simulations. It is found that each Li ion migrates between 6b sites as it is pushed out or repelled by other Li ions around these 6b sites. Hence, the high Li-ion conductivity is attributed to a migration mechanism driven by Frenkel-like defect.
引用
收藏
页码:8983 / 8991
页数:9
相关论文
共 60 条
  • [1] A periodic genetic algorithm with real-space representation for crystal structure and polymorph prediction
    Abraham, N. L.
    Probert, M. I. J.
    [J]. PHYSICAL REVIEW B, 2006, 73 (22)
  • [2] Pathways for ion transport in nanostructured BaF2:CaF2
    Adams, S.
    Tan, E. S.
    [J]. SOLID STATE IONICS, 2008, 179 (1-6) : 33 - 37
  • [3] From bond valence maps to energy landscapes for mobile ions in ion-conducting solids
    Adams, Stefan
    [J]. SOLID STATE IONICS, 2006, 177 (19-25) : 1625 - 1630
  • [4] High power lithium ion battery materials by computational design
    Adams, Stefan
    Rao, R. Prasada
    [J]. PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2011, 208 (08): : 1746 - 1753
  • [5] Transport pathways for mobile ions in disordered solids from the analysis of energy-scaled bond-valence mismatch landscapes
    Adams, Stefan
    Rao, R. Prasada
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2009, 11 (17) : 3210 - 3216
  • [6] IONIC-CONDUCTIVITY OF THE LITHIUM TITANIUM PHOSPHATE (LI1+XALXTI2-X(PO4)3), (LI1+XSCXTI2-X(PO4)3), (LI1+XYXTI2-X(PO4)3), (LI1+XLAXTI2-X(PO4)3 SYSTEMS
    AONO, H
    SUGIMOTO, E
    SADAOKA, Y
    IMANAKA, N
    ADACHI, GY
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1989, 136 (02) : 590 - 591
  • [7] ELECTRICAL PROPERTY AND SINTERABILITY OF LITI2(PO4)3 MIXED WITH LITHIUM SALT (LI3PO4 OR LI3BO3)
    AONO, H
    SUGIMOTO, E
    SADAOKA, Y
    IMANAKA, N
    ADACHI, G
    [J]. SOLID STATE IONICS, 1991, 47 (3-4) : 257 - 264
  • [8] IONIC-CONDUCTIVITY OF SOLID ELECTROLYTES BASED ON LITHIUM TITANIUM PHOSPHATE
    AONO, H
    SUGIMOTO, E
    SADAOKA, Y
    IMANAKA, N
    ADACHI, G
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1990, 137 (04) : 1023 - 1027
  • [9] IONIC-CONDUCTIVITY AND SINTERABILITY OF LITHIUM TITANIUM PHOSPHATE SYSTEM
    AONO, H
    SUGIMOTO, E
    SADAOKA, Y
    IMANAKA, N
    ADACHI, G
    [J]. SOLID STATE IONICS, 1990, 40-1 : 38 - 42
  • [10] Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides
    Aydinol, MK
    Kohan, AF
    Ceder, G
    Cho, K
    Joannopoulos, J
    [J]. PHYSICAL REVIEW B, 1997, 56 (03): : 1354 - 1365