A characterization of Hyers-Ulam stability of first order linear differential operators

被引:159
作者
Miura, T [1 ]
Miyajima, S
Takahasi, SE
机构
[1] Yamagata Univ, Dept Basic Technol Appl Math & Phys, Yonezawa, Yamagata 9928510, Japan
[2] Sci Univ Tokyo, Fac Sci, Dept Math, Shinjuku Ku, Tokyo 1628601, Japan
基金
日本学术振兴会;
关键词
exponential functions; Hyers-Ulam stability;
D O I
10.1016/S0022-247X(03)00458-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X be a complex Banach space and h : R --> C a continuous function. Let T-h : C-1 (R, X) --> C(R, X) be the linear differential operator defined by T(h)u = u' + hu. We give a necessary and sufficient condition in order that the operator Th has the Hyers-Ulam stability. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:136 / 146
页数:11
相关论文
共 11 条
[1]   On some inequalities and stability results related to the exponential function [J].
Alsina, C ;
Ger, R .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 1998, 2 (04) :373-380
[2]  
[Anonymous], 1964, PROBLEMS MODERN MATH
[3]  
Gajda Z, 1991, INT J MATH MATH SCI, V14, P431, DOI [DOI 10.1155/S016117129100056X, 10.1155/S016117129100056X]
[4]   On the stability of the linear functional equation [J].
Hyers, DH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1941, 27 :222-224
[5]  
Miura T., 2002, Sci. Math. Jpn., V55, P17
[6]  
MIURA T, IN PRESS MATH NACHR
[7]  
Miura T., 2001, TOKYO J MATH, V24, P467
[8]   ON THE BEHAVIOR OF MAPPINGS WHICH DO NOT SATISFY HYERS-ULAM STABILITY [J].
RASSIAS, TM ;
SEMRL, P .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 114 (04) :989-993
[9]   STABILITY OF LINEAR MAPPING IN BANACH-SPACES [J].
RASSIAS, TM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 72 (02) :297-280
[10]  
Takahasi Sin-Ei, 2002, [Bulletin of the KMS, 대한수학회보], V39, P309