On the stochastic Kuramoto-Sivashinsky equation

被引:33
作者
Duan, JQ [1 ]
Ervin, VJ [1 ]
机构
[1] Clemson Univ, Dept Math Sci, Clemson, SC 29634 USA
关键词
random forcing; Kuramoto-Sivashinsky;
D O I
10.1016/S0362-546X(99)00259-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existence and uniqueness of the solution to the Kuramoto-Sivashinsky (K-S) equation is investigated subject to a random forcing term. The solution of du+(uxxxx+uxx+uux)dt-dw = 0 is analyzed, where w is a Q-Wiener process in the probability space (Ω, F, P). The Wiener process w takes value in a Hilbert space. The distribution derivative of w(t) represents an external random force.
引用
收藏
页码:205 / 216
页数:12
相关论文
共 20 条
[1]  
Adams A, 2003, SOBOLEV SPACES
[2]  
[Anonymous], 1988, APPL MATH SCI
[3]   Dissipative quasi-geostrophic dynamics under random forcing [J].
Brannan, JR ;
Duan, JQ ;
Wanner, T .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 228 (01) :221-233
[4]   A GLOBAL ATTRACTING SET FOR THE KURAMOTO-SIVASHINSKY EQUATION [J].
COLLET, P ;
ECKMANN, JP ;
EPSTEIN, H ;
STUBBE, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 152 (01) :203-214
[5]   STOCHASTIC-MODEL FOR SURFACE EROSION VIA ION SPUTTERING - DYNAMICAL EVOLUTION FROM RIPPLE MORPHOLOGY TO ROUGH MORPHOLOGY [J].
CUERNO, R ;
MAKSE, HA ;
TOMASSONE, S ;
HARRINGTON, ST ;
STANLEY, HE .
PHYSICAL REVIEW LETTERS, 1995, 75 (24) :4464-4467
[6]  
Da Prato G, 1996, ERGODICITY INFINITE
[7]  
Da Prato G, 1992, STOCHASTIC EQUATIONS
[8]  
DUAN J, 1995, EFFECT DISPERSION DY
[9]  
DUAN J, 1998, J DIFFER EQUATIONS, V2, P243
[10]   ATTRACTORS AND TRANSIENTS FOR A PERTURBED PERIODIC KDV EQUATION - A NONLINEAR SPECTRAL-ANALYSIS [J].
ERCOLANI, NM ;
MCLAUGHLIN, DW ;
ROITNER, H .
JOURNAL OF NONLINEAR SCIENCE, 1993, 3 (04) :477-539