NON-KAHLER EXPANDING RICCI SOLITONS, EINSTEIN METRICS, AND EXOTIC CONE STRUCTURES

被引:9
作者
Buzano, Maria [1 ]
Dancer, Andrew S. [2 ]
Gallaugher, Michael [1 ]
Wang, McKenzie [1 ]
机构
[1] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada
[2] Univ Oxford, Jesus Coll, Oxford OX1 3DW, England
基金
加拿大自然科学与工程研究理事会;
关键词
expanders; gradient Ricci solitons; Einstein metrics; exotic structures;
D O I
10.2140/pjm.2015.273.369
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider complete multiple warped product type Riemannian metrics on manifolds of the form R-2 x M-2 x ... x M-r, where r >= 2 and M-i are arbitrary closed Einstein spaces with positive scalar curvature. We construct on these spaces a family of non-Kahler, non-Einstein, expanding gradient Ricci solitons with conical asymptotics as well as a family of Einstein metrics with negative scalar curvature. The 2-dimensional Euclidean space factor allows us to obtain homeomorphic but not diffeomorphic examples which have analogous cone structure behaviour at infinity. We also produce numerical evidence for complete expanding solitons on the vector bundles whose sphere bundles are the twistor or Sp(1) bundles over quaternionic projective space.
引用
收藏
页码:369 / 394
页数:26
相关论文
共 34 条
[11]   On the asymptotic behavior of expanding gradient Ricci solitons [J].
Chen, Chih-Wei .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2012, 42 (02) :267-277
[12]   Expanding Ricci solitons asymptotic to cones [J].
Chodosh, Otis .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2014, 51 (1-2) :1-15
[13]  
Dancer A, 2000, J REINE ANGEW MATH, V524, P97
[14]  
Dancer AS, 2013, ASIAN J MATH, V17, P33
[15]   On Ricci solitons of cohomogeneity one [J].
Dancer, Andrew S. ;
Wang, McKenzie Y. .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2011, 39 (03) :259-292
[16]  
Dancer AS, 2009, MATH RES LETT, V16, P349
[17]   Non-Kahler Expanding Ricci Solitons [J].
Dancer, Andrew S. ;
Wang, McKenzie Y. .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2009, 2009 (06) :1107-1133
[18]   A SPECIAL STOKES THEOREM FOR COMPLETE RIEMANNIAN MANIFOLDS [J].
GAFFNEY, MP .
ANNALS OF MATHEMATICS, 1954, 60 (01) :140-145
[19]  
Gastel A, 2004, PROG NONLIN, V59, P81
[20]  
Gutperle M., 2003, J HIGH ENERGY PHYS, V1