NON-KAHLER EXPANDING RICCI SOLITONS, EINSTEIN METRICS, AND EXOTIC CONE STRUCTURES

被引:9
作者
Buzano, Maria [1 ]
Dancer, Andrew S. [2 ]
Gallaugher, Michael [1 ]
Wang, McKenzie [1 ]
机构
[1] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada
[2] Univ Oxford, Jesus Coll, Oxford OX1 3DW, England
基金
加拿大自然科学与工程研究理事会;
关键词
expanders; gradient Ricci solitons; Einstein metrics; exotic structures;
D O I
10.2140/pjm.2015.273.369
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider complete multiple warped product type Riemannian metrics on manifolds of the form R-2 x M-2 x ... x M-r, where r >= 2 and M-i are arbitrary closed Einstein spaces with positive scalar curvature. We construct on these spaces a family of non-Kahler, non-Einstein, expanding gradient Ricci solitons with conical asymptotics as well as a family of Einstein metrics with negative scalar curvature. The 2-dimensional Euclidean space factor allows us to obtain homeomorphic but not diffeomorphic examples which have analogous cone structure behaviour at infinity. We also produce numerical evidence for complete expanding solitons on the vector bundles whose sphere bundles are the twistor or Sp(1) bundles over quaternionic projective space.
引用
收藏
页码:369 / 394
页数:26
相关论文
共 34 条
[1]  
[Anonymous], 2000, STRONGLY ELLIPTIC SY
[2]  
Berard-Bergery L., 1982, NOUVELLES VARIETES R
[3]  
Böhm C, 1999, B SOC MATH FR, V127, P135
[4]   Einstein metrics on spheres [J].
Boyer, CP ;
Galicki, K ;
Kollár, J .
ANNALS OF MATHEMATICS, 2005, 162 (01) :557-580
[5]   Einstein metrics on exotic spheres in dimensions 7, 11, and 15 [J].
Boyer, CP ;
Galicki, K ;
Kollár, J ;
Thomas, E .
EXPERIMENTAL MATHEMATICS, 2005, 14 (01) :59-64
[6]  
Bryant R., 2005, PREPRINT
[7]  
Buzano M., 2013, ARXIV13096140
[8]   Initial value problem for cohomogeneity one gradient Ricci solitons [J].
Buzano, Maria .
JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (06) :1033-1044
[9]  
Carrillo JA, 2009, COMMUN ANAL GEOM, V17, P721
[10]  
Chen BL, 2009, J DIFFER GEOM, V82, P363