Lightweight Target-Aware Attention Learning Network-Based Target Tracking Method

被引:7
作者
Zhao, Yanchun [1 ]
Zhang, Jiapeng [2 ]
Duan, Rui [2 ]
Li, Fusheng [1 ]
Zhang, Huanlong [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Automat Engn, Chengdu 611731, Peoples R China
[2] Zhengzhou Univ Light Ind, Sch Elect & Informat Engn, Zhengzhou 450002, Peoples R China
基金
中国国家自然科学基金;
关键词
target features; siamese trackers; lightweight network; target tracking; OBJECT TRACKING; REGRESSION;
D O I
10.3390/math10132299
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Siamese network trackers based on pre-trained depth features have achieved good performance in recent years. However, the pre-trained depth features are trained in advance on large-scale datasets, which contain feature information of a large number of objects. There may be a pair of interference and redundant information for a single tracking target. To learn a more accurate target feature information, this paper proposes a lightweight target-aware attention learning network to learn the most effective channel features of the target online. The lightweight network uses a designed attention learning loss function to learn a series of channel features with weights online with no complex parameters. Compared with the pre-trained features, the channel features with weights can represent the target more accurately. Finally, the lightweight target-aware attention learning network is unified into a Siamese tracking network framework to implement target tracking effectively. Experiments on several datasets demonstrate that the tracker proposed in this paper has good performance.
引用
收藏
页数:18
相关论文
共 43 条
[1]   Staple: Complementary Learners for Real-Time Tracking [J].
Bertinetto, Luca ;
Valmadre, Jack ;
Golodetz, Stuart ;
Miksik, Ondrej ;
Torr, Philip H. S. .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :1401-1409
[2]   Fully-Convolutional Siamese Networks for Object Tracking [J].
Bertinetto, Luca ;
Valmadre, Jack ;
Henriques, Joao F. ;
Vedaldi, Andrea ;
Torr, Philip H. S. .
COMPUTER VISION - ECCV 2016 WORKSHOPS, PT II, 2016, 9914 :850-865
[3]   Improved mean shift integrating texture and color features for robust real time object tracking [J].
Bousetouane, Fouad ;
Dib, Lynda ;
Snoussi, Hichem .
VISUAL COMPUTER, 2013, 29 (03) :155-170
[4]   HiFT: Hierarchical Feature Transformer for Aerial Tracking [J].
Cao, Ziang ;
Fu, Changhong ;
Ye, Junjie ;
Li, Bowen ;
Li, Yiming .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :15437-15446
[5]   Learning Linear Regression via Single-Convolutional Layer for Visual Object Tracking [J].
Chen, Kai ;
Tao, Wenbing .
IEEE TRANSACTIONS ON MULTIMEDIA, 2019, 21 (01) :86-97
[6]   Real-Time Semantic Segmentation Based on Dilated Convolution Smoothing and Lightweight Up-Sampling [J].
Cheng Xiaoyue ;
Zhao Longzhang ;
Hu Qiong ;
Shi Jiapeng .
LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (02)
[7]   ATOM: Accurate Tracking by Overlap Maximization [J].
Danelljan, Martin ;
Bhat, Goutam ;
Khan, Fahad Shahbaz ;
Felsberg, Michael .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :4655-4664
[8]   ECO: Efficient Convolution Operators for Tracking [J].
Danelljan, Martin ;
Bhat, Goutam ;
Khan, Fahad Shahbaz ;
Felsberg, Michael .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :6931-6939
[9]   Discriminative Scale Space Tracking [J].
Danelljan, Martin ;
Hager, Gustav ;
Khan, Fahad Shahbaz ;
Felsberg, Michael .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (08) :1561-1575
[10]   Convolutional Features for Correlation Filter Based Visual Tracking [J].
Danelljan, Martin ;
Hager, Gustav ;
Khan, Fahad Shahbaz ;
Felsberg, Michael .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOP (ICCVW), 2015, :621-629