Prediction Model and Principle of End-of-Life Threshold for Lithium Ion Batteries Based on Open Circuit Voltage Drifts

被引:10
作者
Cui, Yingzhi [1 ,2 ]
Yang, Jie [2 ]
Du, Chunyu [2 ]
Zuo, Pengjian [1 ,2 ]
Gao, Yunzhi [1 ,2 ]
Cheng, Xinqun [1 ,2 ]
Ma, Yulin [1 ,2 ]
Yin, Geping [1 ]
机构
[1] Harbin Inst Technol, Sch Chem & Chem Engn, MIIT Key Lab Crit Mat Technol New Energy Convers, Harbin 150001, Heilongjiang, Peoples R China
[2] Harbin Inst Technol, Inst Adv Chem Power Sources, Sch Chem & Chem Engn, Harbin 150001, Heilongjiang, Peoples R China
关键词
Lithium ion battery; End-of-life threshold; Lifetime prediction; Open circuit voltage drift; HYBRID ELECTRIC VEHICLES; HEALTH ESTIMATION; CAPACITY-LOSS; AUTOMOTIVE APPLICATIONS; PARTICLE FILTER; POWER BATTERIES; SHALLOW-DEPTH; STATE; CHARGE; CELLS;
D O I
10.1016/j.electacta.2017.09.151
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The end-of-life (EOL) of a lithium ion battery (LIB) is defined as the time point when the LIB can no longer provide sufficient power or energy to accomplish its intended function. Generally, the EOL occurs abruptly when the degradation of a LIB reaches the threshold. Therefore, current prediction methods of EOL by extrapolating the early degradation behavior often result in significant errors. To address this problem, this paper analyzes the reason for the EOL threshold of a LIB with shallow depth of discharge. It is found that the sudden appearance of EOL threshold results from the drift of open circuit voltage (OCV) at the end of both shallow depth and full discharges. Further, a new EOL threshold prediction model with highly improved accuracy is developed based on the OCV drifts and their evolution mechanism, which can effectively avoid the misjudgment of EOL threshold. The accuracy of this EOL threshold prediction model is verified by comparing with experimental results. The EOL threshold prediction model can be applied to other battery chemistry systems and its possible application in electric vehicles is finally discussed. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:83 / 91
页数:9
相关论文
共 60 条
[1]   Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. I. Experimental investigation [J].
Andre, D. ;
Meiler, M. ;
Steiner, K. ;
Wimmer, Ch ;
Soczka-Guth, T. ;
Sauer, D. U. .
JOURNAL OF POWER SOURCES, 2011, 196 (12) :5334-5341
[2]  
[Anonymous], 2012, 2012 IEEE AEROSPACE
[3]  
[Anonymous], 2010, 626601 IEC
[4]   A review on lithium-ion battery ageing mechanisms and estimations for automotive applications [J].
Barre, Anthony ;
Deguilhem, Benjamin ;
Grolleau, Sebastien ;
Gerard, Mathias ;
Suard, Frederic ;
Riu, Delphine .
JOURNAL OF POWER SOURCES, 2013, 241 :680-689
[5]   Universal battery parameterization to yield a non-linear equivalent circuit valid for battery simulation at arbitrary load [J].
Barsoukov, E ;
Kim, JH ;
Yoon, CO ;
Lee, H .
JOURNAL OF POWER SOURCES, 1999, 83 (1-2) :61-70
[6]   Critical review of state of health estimation methods of Li-ion batteries for real applications [J].
Berecibar, M. ;
Gandiaga, I. ;
Villarreal, I. ;
Omar, N. ;
Van Mierlo, J. ;
Van den Bossche, P. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 56 :572-587
[7]   Differential voltage analyses of high-power lithium-ion cells. 4. Cells containing NMC [J].
Bloom, Ira ;
Walker, Lee K. ;
Basco, John K. ;
Abraham, Daniel P. ;
Christophersen, Jon P. ;
Ho, Chinh D. .
JOURNAL OF POWER SOURCES, 2010, 195 (03) :877-882
[8]   Cycle life evaluation of 3 Ah LixMn2O4-based lithium-ion secondary cells for low-earth-orbit satellites I. Full cell results [J].
Brown, Shelley ;
Ogawa, Keita ;
Kumeuchi, Youichi ;
Enomoto, Shinsuke ;
Uno, Masatoshi ;
Saito, Hirobumi ;
Sone, Yoshitsugu ;
Abraham, Daniel ;
Lindbergh, Goeran .
JOURNAL OF POWER SOURCES, 2008, 185 (02) :1444-1453
[9]   Impedance-based non-linear dynamic battery modeling for automotive applications [J].
Buller, S ;
Thele, M ;
Karden, E ;
De Doncker, RW .
JOURNAL OF POWER SOURCES, 2003, 113 (02) :422-430
[10]   Staging phase transitions in LixCoO2 [J].
Chen, ZH ;
Lu, ZH ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (12) :A1604-A1609