Pulse electrodeposited RuO2 electrodes for high-performance supercapacitor applications

被引:38
作者
Arunachalam, R. [1 ]
Prataap, R. K. Vishnu [2 ]
Raj, R. Pavul [2 ]
Mohan, S. [2 ]
Vijayakumar, J. [1 ]
Peter, L. [3 ]
Al Ahmad, Mahmoud [4 ]
机构
[1] Sultan Qaboos Univ, Coll Engn, Dept Mech Engn, Sultanate, Oman
[2] CSIR, Cent Electrochem Res Inst, Karaikkudi, Tamil Nadu, India
[3] Hungarian Acad Sci, Wigner Res Ctr Phys, Budapest, Hungary
[4] United Arab Emirates Univ, Coll Engn, Dept Elect Engn, Al Ain, U Arab Emirates
关键词
Supercapacitor; RuO2; ruthenium (III) nitrosyl sulphate; RuCl3; potentiostatic pulse deposition; specific capacitance; HYDROUS-RUTHENIUM-OXIDE; THIN-FILM ELECTRODES; ELECTROCHEMICAL CHARACTERIZATION; CAPACITANCE; DEPOSITION; GRAPHENE; CHARGE;
D O I
10.1080/02670844.2018.1426408
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The present work addresses high-performance Ruthenium Oxide (RuO2) electrodes prepared by using a simple pulse electrodeposition method. For the comparison purpose, two different precursors, namely, ruthenium (III) nitrosyl sulphate (RuNS) and ruthenium trichloride (RuCl3), were used in this study. The coatings were subjected to material characterisation such as Field Emission Scanning Electron Microscopy and Energy-Dispersive X-ray Spectroscopy, X-ray diffraction and Transmission electron microscopy as well as electrochemical characterisation such as Cyclic Voltammetry, Electrochemical Impedance Spectroscopy and charge/discharge. The RuNS-RuO2 coating exhibited excellent specific capacitance (1724 F/g at 5 A/g) with a remarkable rate capability. This value is significantly higher (52%) than the value obtained for RuCl3-RuO2 electrode material at 5 A/g. The findings provide valuable information on the potential use of RuNS as a precursor for synthesising RuO2 and pulse electrodeposition process to produce electrodes for supercapacitors.
引用
收藏
页码:103 / 109
页数:7
相关论文
共 35 条
[1]   EFFECT OF THE NATURE OF THE PRECURSOR ON THE ELECTROCATALYTIC PROPERTIES OF THERMALLY PREPARED RUTHENIUM OXIDE [J].
ARDIZZONE, S ;
FALCIOLA, M ;
TRASATTI, S .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1989, 136 (05) :1545-1550
[2]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[3]   Development of nano-spherical RuO2 active material on AISI 317 steel substrate via pulse electrodeposition for supercapacitors [J].
Arunachalam, R. ;
Gnanamuthu, R. M. ;
Al Ahmad, Mahmoud ;
Mohan, S. ;
Raj, R. Pavul ;
Maharaja, J. ;
Al Taradeh, Nedal ;
Al-Hinai, Ashraf .
SURFACE & COATINGS TECHNOLOGY, 2015, 276 :336-340
[4]   Hollow nickel nanocorn arrays as three-dimensional and conductive support for metal oxides to boost supercapacitive performance [J].
Chao, Dongliang ;
Xia, Xinhui ;
Zhu, Changrong ;
Wang, Jin ;
Uu, Jilei ;
Lin, Jianyi ;
Shen, Zexiang ;
Fan, Hong Jin .
NANOSCALE, 2014, 6 (11) :5691-5697
[5]   Toward the Theoretical Capacitance of RuO2 Reinforced by Highly Conductive Nanoporous Gold [J].
Chen, L. Y. ;
Hou, Y. ;
Kang, J. L. ;
Hirata, A. ;
Fujita, T. ;
Chen, M. W. .
ADVANCED ENERGY MATERIALS, 2013, 3 (07) :851-856
[6]   Microwave-assisted synthesis of organic-inorganic poly(3,4-ethylenedioxythiophene)/RuO2•xH2O nanocomposite for supercapacitor [J].
Chen, Li ;
Yuan, Changzhou ;
Gao, Bo ;
Chen, Shengyao ;
Zhang, Xiaogang .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2009, 13 (12) :1925-1933
[7]   Synergistic Effects from Graphene and Carbon Nanotubes Enable Flexible and Robust Electrodes for High-Performance Supercapacitors [J].
Cheng, Yingwen ;
Lu, Songtao ;
Zhang, Hongbo ;
Varanasi, Chakrapani V. ;
Liu, Jie .
NANO LETTERS, 2012, 12 (08) :4206-4211
[8]   Nanocomposite films of polyaniline/graphene quantum dots and its supercapacitor properties [J].
Dinari, M. ;
Momeni, M. M. ;
Goudarzirad, M. .
SURFACE ENGINEERING, 2016, 32 (07) :535-540
[9]   ELECTROCHEMICAL IMPEDANCE SPECTROSCOPIC STUDY OF ELECTROPOLYMERIZED POLY(PARA-PHENYLENE) FILM ON PLATINUM-ELECTRODE SURFACE [J].
GAO, ZQ ;
KVARNSTROM, C ;
IVASKA, A .
ELECTROCHIMICA ACTA, 1994, 39 (10) :1419-1425
[10]  
Gujar TP, 2007, INT J ELECTROCHEM SC, V2, P666