Surface-Phase Engineering via Lanthanum Doping Enables Enhanced Electrochemical Performance of Li-Rich Layered Cathode

被引:17
作者
Liu, Ziwei [1 ]
Wu, Yongmin [2 ]
Huo, Hua [1 ]
Jian, Jiyuan [1 ]
Sun, Dandan [1 ]
Zhang, Xin [1 ]
Du, Chunyu [1 ]
Zuo, Pengjian [1 ]
Yin, Geping [1 ]
Ma, Yulin [1 ]
机构
[1] Harbin Inst Technol, Sch Chem & Chem Engn, MIIT Key Lab Crit Mat Technol New Energy Convers &, Harbin 150001, Peoples R China
[2] Shanghai Inst Space Power Sources Technol, State Key Lab Space Power Sources, Shanghai 200245, Peoples R China
来源
ACS APPLIED ENERGY MATERIALS | 2022年 / 5卷 / 08期
基金
中国国家自然科学基金;
关键词
Li-rich cathode; La-doping; surface; phase adjusting; vacancy defects; CYCLING STABILITY; RATE CAPABILITY; LITHIUM; CHALLENGES; INTERFACE; KINETICS; OXIDES;
D O I
10.1021/acsaem.2c01295
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High-capacity Li-rich layered oxides (LLOs) hold giant promise as cathodes for Li-ion batteries but still suffer from cycling instability and voltage decay. The oxygen redox reaction and phase transformation to spinel are major incentives for performance deterioration. Hence, we propose a La-doping strategy to stabilize surface oxygen and reduce spinel phase components. The special La-O bond could exhibit not only an electrovalent characteristic bond but also a relative covalent property, which enhances the stability of lattice oxygen and the reversibility of oxygen redox. The spinel phase composition of surface area could be reduced through La doping, which suppresses capacity fade and voltage decay. Accordingly, the La-doping LLOs with Li and O vacancy defects forming at the surface area exhibit excellent reversible capacity (225 mA h/g at 1 C and 145 mA h/g at 5 C) and rate performance (80.68 and 81.76% capacity retention over 300 cycles at 1 and 5 C). This study could be extended to synthesize other advanced cathode materials for next-generation Li-ion batteries and even be helpful to the R & D of rare-earth utilization.
引用
收藏
页码:9648 / 9656
页数:9
相关论文
共 55 条
[1]   Evidence for 5d-σ and 5d-π covalency in lanthanide sesquioxides from oxygen K-edge X-ray absorption spectroscopy [J].
Altman, Alison B. ;
Pacold, Joseph I. ;
Wang, Jian ;
Lukens, Wayne W. ;
Minasian, Stefan G. .
DALTON TRANSACTIONS, 2016, 45 (24) :9948-9961
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   The Effects of Trace Yb Doping on the Electrochemical Performance of Li-Rich Layered Oxides [J].
Bao, Liying ;
Yang, Zeliang ;
Chen, Lai ;
Su, Yuefeng ;
Lu, Yun ;
Li, Weikang ;
Yuan, Feiyu ;
Dong, Jinyang ;
Fang, Youyou ;
Ji, Zhe ;
Shi, Chen ;
Feng, Wu .
CHEMSUSCHEM, 2019, 12 (10) :2294-2301
[4]   Revealing the Role of W-Doping in Enhancing the Electrochemical Performance of the LiNi0.6Co0.2Mn0.2O2 Cathode at 4.5 V [J].
Chu, Binbin ;
You, Longzhen ;
Li, Guangxin ;
Huang, Tao ;
Yu, Aishui .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (06) :7308-7316
[5]   Structure and Interface Design Enable Stable Li-Rich Cathode [J].
Cui, Chunyu ;
Fan, Xiulin ;
Zhou, Xiuquan ;
Chen, Ji ;
Wang, Qinchao ;
Ma, Lu ;
Yang, Chongyin ;
Hu, Enyuan ;
Yang, Xiao-Qing ;
Wang, Chunsheng .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (19) :8918-8927
[6]   Understanding the Enhanced Kinetics of Gradient-Chemical-Doped Lithium-Rich Cathode Material [J].
Ding, Zhengping ;
Xu, Mingquan ;
Liu, Jiatu ;
Huang, Qun ;
Chen, Libao ;
Wang, Peng ;
Ivey, Douglas G. ;
Wei, Weifeng .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (24) :20519-20526
[7]   Challenges for Rechargeable Li Batteries [J].
Goodenough, John B. ;
Kim, Youngsik .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :587-603
[8]   Charge Transfer Band Gap as an Indicator of Hysteresis in Li-Disordered Rock Salt Cathodes for Li-Ion Batteries [J].
Jacquet, Quentin ;
Iadecola, Antonella ;
Saubanere, Matthieu ;
Li, Haifeng ;
Berg, Erik. J. ;
Rousse, Gwenaelle ;
Cabana, Jordi ;
Doublet, Marie-Liesse ;
Tarascon, Jean-Marie .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (29) :11452-11464
[9]   Enhancing the rate capability of high capacity xLi2MnO3 • (1-x)LiMO2 (M = Mn, Ni, Co) electrodes by Li-Ni-PO4 treatment [J].
Kang, Sun-Ho ;
Thackeray, Michael M. .
ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (04) :748-751
[10]   Enhanced electrochemical performance of lithium rich layered cathode materials by Ca2+ substitution [J].
Laisa, C. P. ;
Ramesha, R. N. ;
Ramesha, K. .
ELECTROCHIMICA ACTA, 2017, 256 :10-18