Decoupled modified characteristic finite element method for the time-dependent Navier-Stokes/Biot problem

被引:5
作者
Guo, Liming [1 ]
Chen, Wenbin [2 ,3 ]
机构
[1] Xinyang Normal Univ, Sch Math & Stat, Xinyang, Peoples R China
[2] Fudan Univ, Sch Math Sci, Shanghai, Peoples R China
[3] Fudan Univ, Shanghai Key Lab Math Nonlinear Sci, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
error estimates; modified characteristic finite element method; Navier-Stokes; Biot problem; stability; NUMERICAL-METHODS; ERROR ANALYSIS; FLUID; STABILITY; FLOW; CONVERGENCE; SCHEMES; APPROXIMATION; SURFACE;
D O I
10.1002/num.22830
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, a decoupled modified characteristic finite element method is proposed for the time-dependent Navier-Stokes/Biot problem. In the numerical scheme, the implicit backward Euler scheme is used for the time discretization, whereas the coupling terms are treated explicitly. At each time step, we only need to solve two decoupled problems, one is the Navier-Stokes equations solved by the modified characteristic finite element method, and the other is Biot equations. The stability and the error estimates are established for the proposed fully discrete scheme. Numerical experiments are provided to illustrate the theory.
引用
收藏
页码:1684 / 1712
页数:29
相关论文
共 51 条
  • [1] Adams R.A., 2003, SOBOLEV SPACES, V140
  • [2] A Nitsche-based cut finite element method for the coupling of incompressible fluid flow with poroelasticity
    Ager, C.
    Schott, B.
    Winter, M.
    Wall, W. A.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 351 : 253 - 280
  • [3] A nonlinear Stokes-Biot model for the interaction of a non-Newtonian fluid with poroelastic media
    Ambartsumyan, Ilona
    Ervin, Vincent J.
    Truong Nguyen
    Yotov, Ivan
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2019, 53 (06) : 1915 - 1955
  • [4] A Lagrange multiplier method for a Stokes-Biot fluid-poroelastic structure interaction model
    Ambartsumyan, Ilona
    Khattatov, Eldar
    Yotov, Ivan
    Zunino, Paolo
    [J]. NUMERISCHE MATHEMATIK, 2018, 140 (02) : 513 - 553
  • [5] Splitting methods based on algebraic factorization for fluid-structure interaction
    Badia, Santiago
    Quaini, Annalisa
    Quarteroni, Alfio
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (04) : 1778 - 1805
  • [6] Coupling Biot and Navier-Stokes equations for modelling fluid-poroelastic media interaction
    Badia, Santiago
    Quaini, Annalisa
    Quarteroni, Alfio
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (21) : 7986 - 8014
  • [7] BOUNDARY CONDITIONS AT A NATURALLY PERMEABLE WALL
    BEAVERS, GS
    JOSEPH, DD
    [J]. JOURNAL OF FLUID MECHANICS, 1967, 30 : 197 - &
  • [8] General theory of three-dimensional consolidation
    Biot, MA
    [J]. JOURNAL OF APPLIED PHYSICS, 1941, 12 (02) : 155 - 164
  • [9] Brezzi F., 2012, Mixed and Hybrid Finite Element Methods
  • [10] A loosely-coupled scheme for the interaction between a fluid, elastic structure and poroelastic material
    Bukac, M.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 313 : 377 - 399