Predicting hotspots for invasive species introduction in Europe

被引:18
|
作者
Schneider, Kevin [1 ]
Makowski, David [2 ]
van der Werf, Wopke [3 ]
机构
[1] Wageningen Univ, Business Econ Grp, POB 8130, NL-6700 EW Wageningen, Netherlands
[2] Univ Paris Saclay, AgroParisTech, INRAE, Appl Math & Comp Sci MIA 518, Paris, France
[3] Wageningen Univ, Ctr Crop Syst Anal, POB 430, NL-6700 AK Wageningen, Netherlands
来源
ENVIRONMENTAL RESEARCH LETTERS | 2021年 / 16卷 / 11期
关键词
machine learning; pest introduction; big data; elastic-net; SAMPLE SELECTION BIAS; DISTRIBUTION MODELS; PLANT INVASION; ABSENCE DATA; TRADE; RISK; REGULARIZATION; BIODIVERSITY; ACCURACY; QUALITY;
D O I
10.1088/1748-9326/ac2f19
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Plant pest invasions cost billions of Euros each year in Europe. Prediction of likely places of pest introduction could greatly help focus efforts on prevention and control and thus reduce societal costs of pest invasions. Here, we test whether generic data-driven risk maps of pest introduction, valid for multiple species and produced by machine learning methods, could supplement the costly species-specific risk analyses currently conducted by governmental agencies. An elastic-net algorithm was trained on a dataset covering 243 invasive species to map risk of new introductions in Europe as a function of climate, soils, water, and anthropogenic factors. Results revealed that the BeNeLux states, Northern Italy, the Northern Balkans, and the United Kingdom, and areas around container ports such as Antwerp, London, Rijeka, and Saint Petersburg were at higher risk of introductions. Our analysis shows that machine learning can produce hotspot maps for pest introductions with a high predictive accuracy, but that systematically collected data on species' presences and absences are required to further validate and improve these maps.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] A new approach to horizon-scanning: identifying potentially invasive alien species and their introduction pathways
    Matthews, Jonathan
    Beringen, Ruud
    Creemers, Raymond
    Hollander, Hans
    van Kessel, Nils
    van Kleef, Hein
    de Koppel, Sander van
    Lemaire, Adrienne J. J.
    Ode, Baudewijn
    Verbrugge, Laura N. H.
    Hendriks, A. Jan
    Schipper, Aafke M.
    van der Velde, Gerard
    Leuven, Rob S. E. W.
    MANAGEMENT OF BIOLOGICAL INVASIONS, 2017, 8 (01): : 37 - 52
  • [22] Introduction history, climatic suitability, native range size, species traits and their interactions explain establishment of Chinese woody species in Europe
    Feng, Yanhao
    Maurel, Noelie
    Wang, Zhiheng
    Ning, Lei
    Yu, Fei-Hai
    van Kleunen, Mark
    GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2016, 25 (11): : 1356 - 1366
  • [23] Predicting Road Crash Severity Using Classifier Models and Crash Hotspots
    Islam, Md Kamrul
    Reza, Imran
    Gazder, Uneb
    Akter, Rocksana
    Arifuzzaman, Md
    Rahman, Muhammad Muhitur
    APPLIED SCIENCES-BASEL, 2022, 12 (22):
  • [24] Biodiversity hotspots through time: an introduction
    Willis, Katherine J.
    Gillson, Lindsey
    Knapp, Sandra
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2007, 362 (1478) : 169 - 174
  • [25] Understanding public perceptions toward invasive species in different parts of Europe
    Rodriguez-Rey, Marta
    Borrell, Yaisel J.
    Dopico, Eduardo
    Muha, Teja Petra
    Rolla, Matteo
    JOURNAL OF ENVIRONMENTAL PLANNING AND MANAGEMENT, 2022, 65 (12) : 2257 - 2275
  • [26] Predicting potential distributions of invasive species: where to go from here?
    Gallien, Laure
    Muenkemueller, Tamara
    Albert, Cecile H.
    Boulangeat, Isabelle
    Thuiller, Wilfried
    DIVERSITY AND DISTRIBUTIONS, 2010, 16 (03) : 331 - 342
  • [27] Evaluation of machine learning methods for predicting eradication of aquatic invasive species
    Yanyu Xiao
    Russell Greiner
    Mark A. Lewis
    Biological Invasions, 2018, 20 : 2485 - 2503
  • [28] Spatial ensemble learning for predicting the potential geographical distribution of invasive species
    Yang, Wentao
    Wan, Xiafan
    Deng, Min
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2024, 38 (11) : 2216 - 2234
  • [29] Disentangling the abundance-impact relationship for invasive species
    Bradley, Bethany A.
    Laginhas, Brittany B.
    Whitlock, Raj
    Allen, Jenica M.
    Bates, Amanda E.
    Bernatchez, Genevieve
    Diez, Jeffrey M.
    Early, Regan
    Lenoir, Jonathan
    Vila, Montserrat
    Sorte, Cascade J. B.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (20) : 9919 - 9924
  • [30] Identification of landslide hazard and risk 'hotspots' in Europe
    Jaedicke, Christian
    Van Den Eeckhaut, Miet
    Nadim, Farrokh
    Hervas, Javier
    Kalsnes, Bjorn
    Vangelsten, Bjorn Vidar
    Smith, Jessica T.
    Tofani, Veronica
    Ciurean, Roxana
    Winter, Mike G.
    Sverdrup-Thygeson, Kjetil
    Syre, Egil
    Smebye, Helge
    BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT, 2014, 73 (02) : 325 - 339