The 28 GHz, 10 KW, CW gyrotron generator for the venus ECR icon source at LBNL

被引:0
|
作者
Marks, A [1 ]
Evans, S [1 ]
Jory, H [1 ]
Holstein, D [1 ]
Rizzo, R [1 ]
Beck, P [1 ]
Cisto, B [1 ]
Leitner, D [1 ]
Lyneis, CM [1 ]
C'ollins, D [1 ]
Dwinell, RD [1 ]
机构
[1] CPI, Beverly, MA 01915 USA
来源
Electron Cyclotron Resonance Ion Sources | 2005年 / 749卷
关键词
D O I
暂无
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The VIA-301 Heatwave(Tm) gyrotron generator was specifically designed to meet the requirements of the Venus ECR Ion Source at the Lawrence Berkeley National Laboratory (LBNL). VENUS (Versatile ECR ion source for NUclear Science) is a next generation superconducting ECR ion source, designed to produce high current, high charge state ions for the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. VENUS also serves as the prototype ion source for the RIA (Rare Isotope Accelerator) front end [1]. This VIA-301 HeatwaveTm gyrotron system provides 100 watts to 10 kW continuous wave (CW) RF output at 28 GHz. The RF output level is smoothly controllable throughout this entire range. The power can be set and maintained to within 10 watts at the higher power end of the power range: and to within 30 watts at the lower power end of the power range. A dual directional coupler, analog conditioning. circuitry, and a 12-bit analog input to the embedded controller are used to provide a power measurement accurate to within 2%. The embedded controller completes a feedback loop using an external command set point for desired power output. Typical control-loop-time is on the order of 500 mS. Hard-wired interlocks are provided for personnel safety and for protection of the generator system. In addition, there are software controlled interlocks for protection. of the generator from high ambient temperature, high water temperature, and other conditions that would affect the performance of the generator or reduce the lifetime of the gyrotron. Cooling of the gyrotron and power supply is achieved using both water and forced circulation of ambient air. Water-cooling provides about 80% of the cooling requirement. Input power to the generator from the prime power line is less than 60 kW at full power. The Heatwave(Tm) may be operated locally via its front panel or remotely via either RS-232 and/or Ethernet connections. Through the RS-232 the forward power, the reflected power, the interlock status and crucial operating parameters are transmitted and tied into the VENUS PLC control system. The paper describes the gyrotron system, control software, the user interface, the main system parameter, and performance in respect to output power stability.
引用
收藏
页码:207 / 210
页数:4
相关论文
共 50 条
  • [31] Characteristics of 28GHz gyrotron for ECRH on GAMMA10
    Kamata, Y.
    Imai, T.
    Tatematsu, Y.
    Watanabe, O.
    Minami, R.
    Saito, T.
    Sakamoto, K.
    Kariya, T.
    Mitsunaka, Y.
    Machida, N.
    Kaitsuka, T.
    Nakamura, M.
    Numakura, T.
    Cho, T.
    FUSION SCIENCE AND TECHNOLOGY, 2007, 51 (2T) : 412 - 414
  • [32] High current proton source based on ECR discharge sustained by 37.5 GHz gyrotron radiation
    Skalyga, V.
    Izotov, I.
    Sidorov, A.
    Razin, S.
    Zorin, V.
    Tarvainen, O.
    Koivisto, H.
    Kalvas, T.
    JOURNAL OF INSTRUMENTATION, 2012, 7
  • [33] Neutron generator for BNCT based on high current ECR ion source with gyrotron plasma heating
    Skalyga, V.
    Izotov, I.
    Golubev, S.
    Razin, S.
    Sidorov, A.
    Maslennikova, A.
    Volovecky, A.
    Kalvas, T.
    Koivisto, H.
    Tarvainen, O.
    APPLIED RADIATION AND ISOTOPES, 2015, 106 : 29 - 33
  • [34] Design and experimental results of a 28 GHz,400 kW gyrotron for electron cyclotron resonance heating
    孙迪敏
    黄麒力
    胡林林
    胡鹏
    卓婷婷
    马国武
    陈洪斌
    马弘舸
    Plasma Science and Technology, 2023, 25 (08) : 172 - 177
  • [35] Design and experimental results of a 28 GHz, 400 kW gyrotron for electron cyclotron resonance heating
    Sun, Dimin
    Huang, Qili
    Hu, Linlin
    Hu, Peng
    Zhuo, Tingting
    Ma, Guowu
    Chen, Hongbin
    Ma, Hongge
    PLASMA SCIENCE & TECHNOLOGY, 2023, 25 (08)
  • [36] Design and experimental results of a 28 GHz,400 kW gyrotron for electron cyclotron resonance heating
    孙迪敏
    黄麒力
    胡林林
    胡鹏
    卓婷婷
    马国武
    陈洪斌
    马弘舸
    Plasma Science and Technology, 2023, (08) : 172 - 177
  • [37] Preliminary simulation of beam extraction for the 28-GHz ECR ion source
    Bum-Sik Park
    Yonghwan Kim
    Sukjin Choi
    Journal of the Korean Physical Society, 2015, 67 : 1426 - 1429
  • [38] Electromagnetic characteristics of the superconducting magnets for the 28-GHz ECR ion source
    Hongseok Lee
    Jong O. Kang
    Hyoungku Kang
    Jeong Il Heo
    Sukjin Choi
    Yong Hwan Kim
    Jonggi Hong
    Journal of the Korean Physical Society, 2015, 66 : 384 - 388
  • [39] Electromagnetic characteristics of the superconducting magnets for the 28-GHz ECR ion source
    Lee, Hongseok
    Kang, Jong O.
    Kang, Hyoungku
    Heo, Jeong Il
    Choi, Sukjin
    Kim, Yong Hwan
    Hong, Jonggi
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2015, 66 (03) : 384 - 388
  • [40] Design of ASTERICS: A Superconducting 28 GHz ECR Ion Source Magnet for GANIL
    Simon, D.
    Cadoux, T.
    Mora, E. Fernandez
    Hervieu, B.
    Berriaud, C.
    Segreti, M.
    Minier, G.
    Rochepault, E.
    Vallcorba, R.
    Sinanna, A.
    Gregoire, L.
    Bakon, N.
    Thuillier, T.
    Ghribi, A.
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2023, 33 (05)