The 28 GHz, 10 KW, CW gyrotron generator for the venus ECR icon source at LBNL

被引:0
|
作者
Marks, A [1 ]
Evans, S [1 ]
Jory, H [1 ]
Holstein, D [1 ]
Rizzo, R [1 ]
Beck, P [1 ]
Cisto, B [1 ]
Leitner, D [1 ]
Lyneis, CM [1 ]
C'ollins, D [1 ]
Dwinell, RD [1 ]
机构
[1] CPI, Beverly, MA 01915 USA
来源
Electron Cyclotron Resonance Ion Sources | 2005年 / 749卷
关键词
D O I
暂无
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The VIA-301 Heatwave(Tm) gyrotron generator was specifically designed to meet the requirements of the Venus ECR Ion Source at the Lawrence Berkeley National Laboratory (LBNL). VENUS (Versatile ECR ion source for NUclear Science) is a next generation superconducting ECR ion source, designed to produce high current, high charge state ions for the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. VENUS also serves as the prototype ion source for the RIA (Rare Isotope Accelerator) front end [1]. This VIA-301 HeatwaveTm gyrotron system provides 100 watts to 10 kW continuous wave (CW) RF output at 28 GHz. The RF output level is smoothly controllable throughout this entire range. The power can be set and maintained to within 10 watts at the higher power end of the power range: and to within 30 watts at the lower power end of the power range. A dual directional coupler, analog conditioning. circuitry, and a 12-bit analog input to the embedded controller are used to provide a power measurement accurate to within 2%. The embedded controller completes a feedback loop using an external command set point for desired power output. Typical control-loop-time is on the order of 500 mS. Hard-wired interlocks are provided for personnel safety and for protection of the generator system. In addition, there are software controlled interlocks for protection. of the generator from high ambient temperature, high water temperature, and other conditions that would affect the performance of the generator or reduce the lifetime of the gyrotron. Cooling of the gyrotron and power supply is achieved using both water and forced circulation of ambient air. Water-cooling provides about 80% of the cooling requirement. Input power to the generator from the prime power line is less than 60 kW at full power. The Heatwave(Tm) may be operated locally via its front panel or remotely via either RS-232 and/or Ethernet connections. Through the RS-232 the forward power, the reflected power, the interlock status and crucial operating parameters are transmitted and tied into the VENUS PLC control system. The paper describes the gyrotron system, control software, the user interface, the main system parameter, and performance in respect to output power stability.
引用
收藏
页码:207 / 210
页数:4
相关论文
共 50 条
  • [1] 28 GHz 10 kW gyrotron system for electron cyclotron resonance ion source
    Bykov, Y
    Denisov, G
    Eremeev, A
    Gorbatushkov, V
    Kurkin, V
    Kalynova, G
    Kholoptsev, V
    Luchinin, A
    Plotnikov, I
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (05): : 1437 - 1439
  • [2] 45GHz/20kW Gyrotron-based Microwave Generator for ECR Ion Source
    Tsvetkov, A.
    Eremeev, A.
    Kholoptsev, V
    Glyavin, M.
    Bykov, Yu
    Denisov, G.
    Kopelovich, E.
    Troitskiy, M.
    Kuznetsov, M.
    Zhurin, K.
    Sobolev, D.
    Chirkov, A.
    Shmelev, M.
    Plotnikov, I
    Bakulin, M.
    Tai, E.
    Soluyanova, E.
    2017 42ND INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES (IRMMW-THZ), 2017,
  • [3] Development of a 28 GHz 50kW CW Gyrotron for ECRH application
    Hu, Linlin
    Ma, Guowu
    Sun, Dimin
    Zhuo, Tingting
    Huang, Qili
    Jiang, Yi
    Chen, Hongbin
    Meng, Fanbao
    2020 45TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES (IRMMW-THZ), 2020,
  • [4] A Reflected Power Isolator for a 10 kW, 28 GHz Gyrotron
    Woskov, Paul P.
    2013 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST (IMS), 2013,
  • [5] First results of the superconducting ECR ion source Venus with 28 GHz
    Leitner, D
    Lyneis, CM
    Abbott, SR
    Dwinell, RD
    Collins, D
    Leitner, M
    ELECTRON CYCLOTRON RESONANCE ION SOURCES, 2005, 749 : 3 - 9
  • [6] 45 GHz/20 kW GYROTRON-BASED SYSTEM FOR ECR ION SOURCE
    Denisov, Grigory G.
    Bykov, Yury V.
    Glyavin, Mikhail Yu.
    Tsvetkov, Alexander I.
    Eremeev, Anatoly G.
    Kholoptsev, Vladislav V.
    Morozkin, Mikhail V.
    Shmelev, Mikhail Yu.
    Sobolev, Dmitry I.
    Chirkov, Alexey V.
    Tai, Eugeny M.
    Soluyanova, Elena A.
    Bakulin, Mikhail I.
    2016 43RD IEEE INTERNATIONAL CONFERENCE ON PLASMA SCIENCE (ICOPS), 2016,
  • [7] Development of the 300 GHz/4 kW/CW gyrotron
    Zapevalov, VE
    Lygin, VK
    Malygin, OV
    Moiseev, MA
    Karpov, VP
    Khizhnjak, VI
    Tai, EM
    Idehara, T
    Ogawa, I
    Mitsudo, S
    CONFERENCE DIGEST OF THE 2004 JOINT 29TH INTERNATIONAL CONFERENCE ON INFRARED AND MILLIMETER WAVES AND 12TH INTERNATIONAL CONFERENCE ON TERAHERTZ ELECTRONICS, 2004, : 149 - 150
  • [8] Analysis of mode competition in 10kW/28GHz gyrotron
    Malygin, A.
    Illy, S.
    Pagonakis, I. Gr
    Avramides, K.
    Thumm, M.
    Jelonnek, J.
    D'Andrea, D.
    Ives, R. Lawrence
    Munz, C-D
    2013 IEEE 14TH INTERNATIONAL VACUUM ELECTRONICS CONFERENCE (IVEC), 2013,
  • [9] Design studies of an 84 GHz, 500 kW, CW gyrotron
    Kartikeyan, MV
    Singh, G
    Borie, E
    Piosczyk, B
    Thumm, A
    IRMMW-THZ2005: THE JOINT 30TH INTERNATIONAL CONFERENCE ON INFRARED AND MILLIMETER WAVES AND 13TH INTERNATIONAL CONFERENCE ON TERAHERTZ ELECTRONICS, VOLS 1 AND 2, 2005, : 387 - 388
  • [10] Conceptual design studies of an 84 GHz, 500 kW, CW gyrotron
    Kartikeyan, M. V.
    Singh, G.
    Borie, E.
    Piosczyk, B.
    Thumm, M.
    INTERNATIONAL JOURNAL OF INFRARED AND MILLIMETER WAVES, 2006, 27 (05): : 657 - 670