Infinitely many radial and non-radial solutions to a quasilinear Schrodinger equation

被引:15
作者
Yang, Xianyong [1 ,2 ]
Wang, Wenbo [2 ]
Zhao, Fukun [2 ]
机构
[1] Yunnan Minzu Univ, Sch Preparatory Educ, Kunming 650500, Yunnan, Peoples R China
[2] Yunnan Normal Univ, Dept Math, Kunming 650500, Yunnan, Peoples R China
关键词
Quasilinear Schrodinger equation; Radial solution; Nonradial solution; SCALAR FIELD-EQUATIONS; ELLIPTIC-EQUATIONS; SOLITON-SOLUTIONS; MULTIPLE SOLUTIONS; EXISTENCE;
D O I
10.1016/j.na.2014.11.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with the following quasilinear Schrodinger equation -Delta u - u Delta(vertical bar u vertical bar(2)) + V(vertical bar x vertical bar)u = f(vertical bar x vertical bar, u), x is an element of R-N By using a change of variables, we obtained the existence of a sequence of radial solutions for N >= 2, a sequence of nonradial solutions for N = 4 or N >= 6, and a nonradial solution for N = 5. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:158 / 168
页数:11
相关论文
共 30 条
[1]  
Alves CO, 2009, ADV DIFFERENTIAL EQU, V14, P911
[2]  
Ambrosetti A, 2003, DISCRETE CONT DYN-A, V9, P55
[3]  
[Anonymous], NATO ADV SCI I C
[4]   INFINITELY MANY NONRADIAL SOLUTIONS OF A EUCLIDEAN SCALAR FIELD EQUATION [J].
BARTSCH, T ;
WILLEM, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 117 (02) :447-460
[5]   INFINITELY MANY RADIAL SOLUTIONS OF A SEMILINEAR ELLIPTIC PROBLEM ON R(N) [J].
BARTSCH, T ;
WILLEM, M .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1993, 124 (03) :261-276
[6]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[7]   Soliton solutions for quasilinear Schrodinger equations with critical growth [J].
Bezerra do O, Joao M. ;
Miyagaki, Olimpio H. ;
Soares, Sergio H. M. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (04) :722-744
[8]   Solutions for a quasilinear Schrodinger equation: a dual approach [J].
Colin, M ;
Jeanjean, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (02) :213-226
[9]   Solitary waves for a class of quasilinear Schrodinger equations in dimension two [J].
do O, Joao Marcos ;
Severo, Uberlandio .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 38 (3-4) :275-315
[10]   Multiple solutions for a quasilinear Schrodinger equation [J].
Fang, Xiang-Dong ;
Szulkin, Andrzej .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (04) :2015-2032