Manual and semiautomatic segmentation of bone sarcomas on MRI have high similarity

被引:0
|
作者
Dionisio, F. C. F. [1 ,2 ]
Oliveira, L. S. [1 ,2 ]
Hernandes, M. A. [1 ]
Engel, E. E. [1 ]
Rangayyan, R. M. [3 ]
Azevedo-Marques, P. M. [1 ]
Nogueira-Barbosa, M. H. [1 ,2 ]
机构
[1] Univ Sao Paulo, Fac Med Ribeirao Preto, Dept Imagens Med Hematol & Oncol Clin, Ribeirao Preto, SP, Brazil
[2] Univ Sao Paulo, Fac Med Ribeirao Preto, Lab Pesquisa Imagens Musculoesquelet, Ribeirao Preto, SP, Brazil
[3] Univ Calgary, Dept Elect & Comp Engn, Calgary, AB, Canada
关键词
Ewing sarcoma; Osteosarcoma; Manual segmentation; Semiautomatic segmentation; PERITUMORAL EDEMA; RADIOMICS; TUMOR; OSTEOSARCOMA; IMAGES; PERIOSTEAL; PROGNOSIS; LESIONS;
D O I
10.1590/1414-431X20198962
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The aims of this study were to evaluate the intra- and interobserver reproducibility of manual segmentation of bone sarcomas in magnetic resonance imaging (MRI) studies and to compare manual and semiautomatic segmentation methods. This retrospective study included twelve osteosarcoma and eight Ewing sarcoma MRI studies performed prior to any therapeutic intervention. All cases were histopathologically confirmed. Three radiologists used 3D-Slicer software to perform manual segmentation of bone sarcomas in a blinded and independent manner. One radiologist segmented manually and also performed semiautomatic segmentation with the GrowCut tool. Segmentation exercises were timed for comparison. The dice similarity coefficient (DSC) and Hausdorff distance (HD) were used to evaluate similarity between the segmentation results and further statistical analyses were performed to compare DSC, HD, and volumetric results. Manual segmentation was reproducible with intraobserver DSC varying from 0.83 to 0.97 and HD from 3.37 to 28.73 mm. Interobserver DSC of manual segmentation showed variation from 0.73 to 0.97 and HD from 3.93 to 33.40 mm. Semiautomatic segmentation compared to manual segmentation resulted in DSCs of 0.71-0.96 and HDs of 5.38-31.54 mm. Semiautomatic segmentation required significantly less time compared to manual segmentation (P value <= 0.05). Among all situations compared, tumor volumetry did not show significant statistical differences (P value >0.05). We found excellent intra- and interobserver agreement for manual segmentation of osteosarcoma and Ewing sarcoma. There was high similarity between manual and semiautomatic segmentation, with a significant reduction of segmentation time using the semiautomatic method.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Multiparametric MRI evaluation of bone sarcomas in children
    Inarejos Clemente, Emilio J.
    Navarro, Oscar M.
    Navallas, Maria
    Ladera, Enrique
    Torner, Ferran
    Sunol, Mariona
    Garraus, Moira
    Catala March, Jordi
    Barber, Ignasi
    INSIGHTS INTO IMAGING, 2022, 13 (01)
  • [2] Multiparametric MRI evaluation of bone sarcomas in children
    Emilio J. Inarejos Clemente
    Oscar M. Navarro
    Maria Navallas
    Enrique Ladera
    Ferran Torner
    Mariona Sunol
    Moira Garraus
    Jordi Català March
    Ignasi Barber
    Insights into Imaging, 13
  • [3] The incidence of skip metastases on whole bone MRI in high-grade bone sarcomas
    Saifuddin, Asif
    Sharif, Ban
    Oliveira, Ines
    Kalus, Sarah
    Barnett, James
    Pressney, Ian
    SKELETAL RADIOLOGY, 2020, 49 (06) : 945 - 954
  • [4] A Novel Approach for Manual Segmentation of the Amygdala and Hippocampus in Neonate MRI
    Hashempour, Niloofar
    Tuulari, Jetro J.
    Merisaari, Harri
    Lidauer, Kristian
    Luukkonen, Iiris
    Saunavaara, Jani
    Parkkola, Riitta
    Lahdesmaki, Tuire
    Lehtola, Satu J.
    Keskinen, Maria
    Lewis, John D.
    Scheinin, Noora M.
    Karlsson, Linnea
    Karlsson, Hasse
    FRONTIERS IN NEUROSCIENCE, 2019, 13
  • [5] Assessment of histological response of paediatric bone sarcomas using FDG PET in comparison to morphological volume measurement and standardized MRI parameters
    Denecke, Timm
    Hundsdoerfer, Patrick
    Misch, Daniel
    Steffen, Ingo G.
    Schoenberger, Stefan
    Furth, Christian
    Plotkin, Michail
    Ruf, Juri
    Hautzel, Hubertus
    Stoever, Brigitte
    Kluge, Regine
    Bierbach, Uta
    Otto, Sylke
    Beck, James F.
    Franzius, Christiane
    Henze, Guenter
    Amthauer, Holger
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2010, 37 (10) : 1842 - 1853
  • [6] CORR Insights®: MRI Identification of the Osseous Extent of Pediatric Bone Sarcomas
    Nicholas, Richard W.
    CLINICAL ORTHOPAEDICS AND RELATED RESEARCH, 2018, 476 (03) : 565 - 567
  • [7] Cerebral Blood Volume Analysis in Glioblastomas Using Dynamic Susceptibility Contrast-Enhanced Perfusion MRI: A Comparison of Manual and Semiautomatic Segmentation Methods
    Jung, Seung Chai
    Choi, Seung Hong
    Yeom, Jeong A.
    Kim, Ji-Hoon
    Ryoo, Inseon
    Kim, Soo Chin
    Shin, Hwaseon
    Lee, A. Leum
    Yun, Tae Jin
    Park, Chul-Kee
    Sohn, Chul-Ho
    Park, Sung-Hye
    PLOS ONE, 2013, 8 (08):
  • [8] A semiautomatic segmentation method framework for pelvic bone tumors based on CT-MR multimodal images
    Ge, Qi
    Xia, Tienan
    Qiu, Yan
    Liu, Jinxin
    Shang, Guanning
    Liu, Bin
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2023, 39 (10)
  • [9] Fully Automated Prostate Segmentation on MRI: Comparison With Manual Segmentation Methods and Specimen Volumes
    Turkbey, Baris
    Fotin, Sergei V.
    Huang, Robert J.
    Yin, Yin
    Daar, Dagane
    Aras, Omer
    Bernardo, Marcelino
    Garvey, Brian E.
    Weaver, Juanita
    Haldankar, Hrishikesh
    Muradyan, Naira
    Merino, Maria J.
    Pinto, Peter A.
    Periaswamy, Senthil
    Choyke, Peter L.
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2013, 201 (05) : W720 - W729
  • [10] SEMIAUTOMATIC SEGMENTATION OF HIGH RESOLUTION IMAGERY WITH TEXTURE SEED REGION GROWING
    Hu, Xiangyun
    GEOSPATIAL DATA AND GEOVISUALIZATION: ENVIRONMENT, SECURITY, AND SOCIETY, 2010, 38