Analysis of a family of HDG methods for second order elliptic problems

被引:15
作者
Li, Binjie [1 ]
Xie, Xiaoping [1 ]
机构
[1] Sichuan Univ, Sch Math, Chengdu 610064, Peoples R China
基金
中国国家自然科学基金;
关键词
HDG; Convergence; Minimal regularity; Postprocessing; FINITE-ELEMENT METHODS; DISCONTINUOUS GALERKIN; UNIFORM-CONVERGENCE; RATIONAL APPROACH; STRAIN METHODS; ERROR ANALYSIS; HYBRID METHODS; STRESS MODES;
D O I
10.1016/j.cam.2016.04.027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we analyze a family of hybridizable discontinuous Galerkin (HDG) methods for second order elliptic problems in two and three dimensions. The methods use piecewise polynomials of degree k >= 0 for both the flux and numerical trace, and piecewise polynomials of degree k + 1 for the potential. We establish error estimates for the numerical flux and potential under the minimal regularity condition. Moreover, we construct a local postprocessing for the flux, which produces a numerical flux with better conservation. Numerical experiments in two-space dimensions confirm our theoretical results. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:37 / 51
页数:15
相关论文
共 46 条
[1]  
Adams RA., 2003, SOBOLEV SPACES
[2]   MIXED AND NONCONFORMING FINITE-ELEMENT METHODS - IMPLEMENTATION, POSTPROCESSING AND ERROR-ESTIMATES [J].
ARNOLD, DN ;
BREZZI, F .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1985, 19 (01) :7-32
[3]  
ATLURI SN, 1977, FINITE ELEMENTS NONL, V1, P3
[4]   MIXED-HYBRID FINITE-ELEMENT APPROXIMATIONS OF 2ND-ORDER ELLIPTIC BOUNDARY-VALUE PROBLEMS [J].
BABUSKA, I ;
ODEN, JT ;
LEE, JK .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1977, 11 (02) :175-206
[5]  
Baudouin Fraeijs de Veubeke, 1965, STRESS ANAL
[6]   Enhanced assumed strain elements and locking in membrane problems [J].
Braess, D .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1998, 165 (1-4) :155-174
[7]   Uniform convergence and a posteriori error estimators for the enhanced strain finite element method [J].
Braess, D ;
Carstensen, C ;
Reddy, BD .
NUMERISCHE MATHEMATIK, 2004, 96 (03) :461-479
[8]   2 FAMILIES OF MIXED FINITE-ELEMENTS FOR 2ND ORDER ELLIPTIC PROBLEMS [J].
BREZZI, F ;
DOUGLAS, J ;
MARINI, LD .
NUMERISCHE MATHEMATIK, 1985, 47 (02) :217-235
[9]  
BREZZI F, 1975, REV FR AUTOMAT INFOR, V9, P5
[10]  
BREZZI F, 1974, REV FR AUTOMAT INFOR, V8, P129