Extended solution space for Chern-Simons gravity: The slowly rotating Kerr black hole

被引:22
作者
Cambiaso, Mauro [1 ,2 ]
Urrutia, Luis F. [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Apartado Postal 70-543, Mexico City 04510, DF, Mexico
[2] Univ Andres Bello, Dept Ciencias Fis, Santiago 220, Chile
来源
PHYSICAL REVIEW D | 2010年 / 82卷 / 10期
关键词
D O I
10.1103/PhysRevD.82.101502
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In the Einstein-Cartan formulation, an iterative procedure to find solutions in nondynamical Chern-Simons gravity in vacuum is proposed. The iterations, in powers of a small parameter beta which codifies the Chern-Simons coupling, start from an arbitrary torsionless solution of Einstein equations. With Schwarzschild as the zeroth-order choice, we derive a second-order differential equation for the O(beta) corrections to the metric, for an arbitrary zeroth-order embedding parameter. In particular, the slowly rotating Kerr metric is an O(beta) solution in either the canonical or the axial embeddings.
引用
收藏
页数:5
相关论文
共 22 条
[1]   Chern-Simons modified general relativity [J].
Alexander, Stephon ;
Yunes, Nicolas .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2009, 480 (1-2) :1-55
[2]   Chern-Simons modified gravity as a torsion theory and its interaction with fermions [J].
Alexander, Stephon ;
Yunes, Nicolas .
PHYSICAL REVIEW D, 2008, 77 (12)
[3]  
[Anonymous], 1972, Gravitation and Cosmology, Principles and Applications of the General Theory of Relativity
[4]   Einstein-cartan formulation of Chern-Simons Lorentz-violating gravity [J].
Botta Cantcheff, Marcelo .
PHYSICAL REVIEW D, 2008, 78 (02)
[5]  
CAMBIASO M, UNPUB
[6]   AXION HAIR FOR KERR BLACK-HOLES [J].
CAMPBELL, BA ;
DUNCAN, MJ ;
KALOPER, N ;
OLIVE, KA .
PHYSICS LETTERS B, 1990, 251 (01) :34-38
[7]   GRAVITATIONAL DYNAMICS WITH LORENTZ CHERN-SIMONS TERMS [J].
CAMPBELL, BA ;
DUNCAN, MJ ;
KALOPER, N ;
OLIVE, KA .
NUCLEAR PHYSICS B, 1991, 351 (03) :778-792
[8]  
CANTCHEFF MB, 2006, P SCI IC
[9]   Generalized Chern-Simons modified gravity in first-order formalism [J].
Ertem, Umit ;
Acik, Ozgur .
GENERAL RELATIVITY AND GRAVITATION, 2013, 45 (02) :477-488
[10]   How do black holes spin in Chern-Simons modified gravity? [J].
Grumiller, Daniel ;
Yunes, Nicolas .
PHYSICAL REVIEW D, 2008, 77 (04)