Choosing dynamical systems that predict weak input

被引:0
作者
Marzen, Sarah E. [1 ,2 ]
机构
[1] Scripps Coll, Pitzer Coll, WM Keck Sci Dept, Claremont, CA 91711 USA
[2] Claremont McKenna Coll, Claremont, CA 91711 USA
关键词
Continuous time systems - Recurrent neural networks - Forecasting;
D O I
10.1103/PhysRevE.104.014409
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Somehow, our brain and other organisms manage to predict their environment. Behind this must be an input-dependent dynamical system, or recurrent neural network, whose present state reflects the history of environmental input. The design principles for prediction-in particular, what kinds of attractors allow for greater predictive capability-are still unknown. We offer some clues to design principles using an attractor picture when the environment perturbs the system's state weakly, motivating and developing some theory for continuous-time time-varying linear reservoirs along the way. Reservoirs that inherently support only stable fixed points are generically good predictors, while reservoirs with limit cycles are good predictors for noisy periodic input.
引用
收藏
页数:11
相关论文
共 22 条
  • [1] Arnold L, 1995, LECT NOTES MATH, V1609, P1
  • [2] Brown T.B., 2020, Technical Report
  • [3] Cho K., 2014, P C EMP METH NAT LAN, P1724, DOI DOI 10.3115/V1/D14-1179
  • [4] Collins J., ARXIV161109913
  • [5] Memory and forecasting capacities of nonlinear recurrent networks
    Gonon, Lukas
    Grigoryeva, Lyudmila
    Ortega, Juan-Pablo
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2020, 414
  • [6] Graves A, 2012, STUD COMPUT INTELL, V385, P1, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
  • [7] Memory in linear recurrent neural networks in continuous time
    Hermans, Michiel
    Schrauwen, Benjamin
    [J]. NEURAL NETWORKS, 2010, 23 (03) : 341 - 355
  • [8] Time cells might be optimized for predictive capacity, not redundancy reduction or memory capacity
    Hsu, Alexander
    Marzen, Sarah E.
    [J]. PHYSICAL REVIEW E, 2020, 102 (06)
  • [9] Reservoir Computing Beyond Memory-Nonlinearity Trade-off
    Inubushi, Masanobu
    Yoshimura, Kazuyuki
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [10] Jaeger H., 2001, Short term memory in echo state networks, V5