Analysis of Q-Fractional Implicit Differential Equation with Nonlocal Riemann-Liouville and Erdelyi-Kober Q-Fractional Integral Conditions

被引:9
|
作者
Zada, Akbar [1 ]
Alam, Mehboob [1 ]
Khalid, Khansa Hina [1 ]
Iqbal, Ramsha [1 ]
Popa, Ioan-Lucian [2 ]
机构
[1] Univ Peshawar, Dept Math, Peshawar, Khyber Pakhtunk, Pakistan
[2] 1 Decembrie 1918 Univ Alba Iulia, Dept Exact Sci & Engn, Alba Iulia 510009, Romania
关键词
Fractional q-differential equations; Fixed point theorem; Erdelyi-Kober q-fractional integral conditions; Green function; Ulam-Hyers stability; STABILITY; EXISTENCE;
D O I
10.1007/s12346-022-00623-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This manuscript aims to present the existence, uniqueness, and various kinds of Ulam's stability for the solution of the implicit q-fractional differential equation corresponding to nonlocal Erdelyi-Kober q-fractional integral conditions. We use different fixed point theorems to obtain the existence and uniqueness of solution. For stability, we utilize the classical technique of nonlinear functional analysis. The examples are presented as applications to illustrate the main results.
引用
收藏
页数:39
相关论文
共 50 条
  • [41] Existence results for Riemann-Liouville fractional integro-differential inclusions with fractional nonlocal integral boundary conditions
    Ahmad, Bashir
    Alghamdi, Badrah
    Alsaedi, Ahmed
    Ntouyas, K. Sotiris
    AIMS MATHEMATICS, 2021, 6 (07): : 7093 - 7110
  • [42] On the solutions of some fractional q-differential equations with the Riemann-Liouville fractional q-derivative
    Shaimardan, S.
    Tokmagambetov, N. S.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2021, 104 (04): : 130 - 141
  • [43] Stability Results for Implicit Fractional Pantograph Differential Equations via φ-Hilfer Fractional Derivative with a Nonlocal Riemann-Liouville Fractional Integral Condition
    Ahmed, Idris
    Kumam, Poom
    Shah, Kamal
    Borisut, Piyachat
    Sitthithakerngkiet, Kanokwan
    Ahmed Demba, Musa
    MATHEMATICS, 2020, 8 (01)
  • [44] Existence and Uniqueness Results for Nonlinear Implicit Riemann-Liouville Fractional Differential Equations with Nonlocal Conditions
    Lachouri, Adel
    Ardjouni, Abdelouaheb
    Djoudi, Ahcene
    FILOMAT, 2020, 34 (14) : 4881 - 4891
  • [45] On a q-fractional variant of nonlinear Langevin equation of different orders
    Ahmad, B.
    Nieto, J. J.
    Alsaedi, A.
    Al-Hutami, H.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2014, 49 (06): : 277 - 286
  • [46] NONLINEAR SEQUENTIAL RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS WITH NONLOCAL AND INTEGRAL BOUNDARY CONDITIONS
    Asawasamrit, Suphawat
    Phuangthong, Nawapol
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2019, 17 (01): : 47 - 63
  • [47] On a q-fractional variant of nonlinear Langevin equation of different orders
    B. Ahmad
    J. J. Nieto
    A. Alsaedi
    H. Al-Hutami
    Journal of Contemporary Mathematical Analysis, 2014, 49 : 277 - 286
  • [48] Existence and uniqueness results for a nonlocal q-fractional integral boundary value problem of sequential orders
    Ahmad, Bashir
    Zhou, Yong
    Alsaedi, Ahmed
    Al-Hutami, Hana
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2016, 20 (03) : 514 - 529
  • [49] Riemann-Liouville fractional-order pantograph differential equation constrained by nonlocal and weighted pantograph integral equations
    El-Sayed, Ahmed M. A.
    El-Sayed, Wagdy G.
    Msaik, Kheria M. O.
    Ebead, Hanaa R.
    AIMS MATHEMATICS, 2025, 10 (03): : 4970 - 4991
  • [50] RIEMANN-LIOUVILLE FRACTIONAL DIFFERENTIAL EQUATIONS WITH FRACTIONAL BOUNDARY CONDITIONS
    Ahmad, Bashir
    Nieto, Juan J.
    FIXED POINT THEORY, 2012, 13 (02): : 329 - 336