Analysis of Q-Fractional Implicit Differential Equation with Nonlocal Riemann-Liouville and Erdelyi-Kober Q-Fractional Integral Conditions

被引:9
|
作者
Zada, Akbar [1 ]
Alam, Mehboob [1 ]
Khalid, Khansa Hina [1 ]
Iqbal, Ramsha [1 ]
Popa, Ioan-Lucian [2 ]
机构
[1] Univ Peshawar, Dept Math, Peshawar, Khyber Pakhtunk, Pakistan
[2] 1 Decembrie 1918 Univ Alba Iulia, Dept Exact Sci & Engn, Alba Iulia 510009, Romania
关键词
Fractional q-differential equations; Fixed point theorem; Erdelyi-Kober q-fractional integral conditions; Green function; Ulam-Hyers stability; STABILITY; EXISTENCE;
D O I
10.1007/s12346-022-00623-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This manuscript aims to present the existence, uniqueness, and various kinds of Ulam's stability for the solution of the implicit q-fractional differential equation corresponding to nonlocal Erdelyi-Kober q-fractional integral conditions. We use different fixed point theorems to obtain the existence and uniqueness of solution. For stability, we utilize the classical technique of nonlinear functional analysis. The examples are presented as applications to illustrate the main results.
引用
收藏
页数:39
相关论文
共 50 条
  • [21] q-fractional differential equations with uncertainty
    Noeiaghdam, Z.
    Allahviranloo, T.
    Nieto, Juan J.
    SOFT COMPUTING, 2019, 23 (19) : 9507 - 9524
  • [22] Nonlocal Hadamard fractional integral conditions for nonlinear Riemann-Liouville fractional differential equations
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    Sudsutad, Weerawat
    BOUNDARY VALUE PROBLEMS, 2014,
  • [23] Ulam stability of Caputo q-fractional delay difference equation: q-fractional Gronwall inequality approach
    Rabia Ilyas Butt
    Thabet Abdeljawad
    Manar A. Alqudah
    Mujeeb ur Rehman
    Journal of Inequalities and Applications, 2019
  • [24] Existence and U-H Stability Results for Nonlinear Coupled Fractional Differential Equations with Boundary Conditions Involving Riemann-Liouville and Erdelyi-Kober Integrals
    Subramanian, Muthaiah
    Duraisamy, P.
    Kamaleshwari, C.
    Unyong, Bundit
    Vadivel, R.
    FRACTAL AND FRACTIONAL, 2022, 6 (05)
  • [25] Hilfer fractional differential inclusions with Erdelyi-Kober fractional integral boundary condition
    Lachouri, Adel
    Abdo, Mohammed S.
    Ardjouni, Abdelouaheb
    Abdalla, Bahaaeldin
    Abdeljawad, Thabet
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [26] Positive solutions for fractional differential systems with nonlocal Riemann-Liouville fractional integral boundary conditions
    Neamprem, Khomsan
    Muensawat, Thanadon
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    POSITIVITY, 2017, 21 (03) : 825 - 845
  • [27] Riemann-Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditions
    Ahmad, Bashir
    Nieto, Juan J.
    BOUNDARY VALUE PROBLEMS, 2011, : 1 - 9
  • [28] Analysis of nonlinear integral equations with Erdelyi-Kober fractional operator
    Wang, JinRong
    Dong, XiWang
    Zhou, Yong
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (08) : 3129 - 3139
  • [29] Implicit Fractional Differential Equation with Nonlocal Fractional Integral Conditions
    Borisut, Piyachat
    Bantaojai, Thanatporn
    THAI JOURNAL OF MATHEMATICS, 2021, 19 (03): : 993 - 1003
  • [30] Riemann-Liouville fractional differential equations with Hadamard fractional integral conditions
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    Thiramanus, Phollakrit
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2016, 54 (01): : 119 - 134