Turing Instability and Bifurcation in a Diffusion Predator-Prey Model with Beddington-DeAngelis Functional Response

被引:10
作者
Tan, Wei [1 ]
Yu, Wenwu [1 ]
Hayat, Tasawar [2 ]
Alsaadi, Fuad [3 ]
Fardoun, Habib M. [4 ]
机构
[1] Southeast Univ, Sch Math, Nanjing 211189, Jiangsu, Peoples R China
[2] Quaid I Azam Univ, Dept Math, Islamabad 45320, Pakistan
[3] King Abdulaziz Univ, Fac Engn, Dept Elect & Comp Engn, Jeddah 21589, Saudi Arabia
[4] King Abdulaziz Univ, Fac Comp & Informat Technol, Dept Informat Syst, Jeddah, Saudi Arabia
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2018年 / 28卷 / 09期
基金
中国国家自然科学基金;
关键词
Predator-prey model; diffusion; Turing instability; Hopf bifurcation; HOLLING TYPE; HOPF-BIFURCATION; SPATIOTEMPORAL PATTERNS; QUALITATIVE-ANALYSIS; COMPLEX PATTERNS; CROSS-DIFFUSION; EPIDEMIC MODEL; BIOLOGICAL-CONTROL; TIME-DELAY; SYSTEM;
D O I
10.1142/S021812741830029X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider a predator-prey model with Beddington-DeAngelis functional response with or without diffusion. For this system, we give a complete and rigorous analysis of the dynamics including the existence of a global positive solution, the stability/Turing instability and the Hopf bifurcation. In the meanwhile, we show, via numerical simulations, that there appears Hopf bifurcation, steady state solution and Turing-Hopf bifurcation with the changes of some parameters of the system.
引用
收藏
页数:32
相关论文
共 56 条
[1]  
[Anonymous], 2011, INTRO REACTION DIFFU
[2]   THE BIOLOGICAL-CONTROL PARADOX [J].
ARDITI, R ;
BERRYMAN, AA .
TRENDS IN ECOLOGY & EVOLUTION, 1991, 6 (01) :32-32
[3]   MUTUAL INTERFERENCE BETWEEN PARASITES OR PREDATORS AND ITS EFFECT ON SEARCHING EFFICIENCY [J].
BEDDINGTON, JR .
JOURNAL OF ANIMAL ECOLOGY, 1975, 44 (01) :331-340
[4]   On a delayed nonautonomous ratio-dependent predator-prey model with Holling type functional response and diffusion [J].
Chen, Fengde ;
Shi, Jinlin .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 192 (02) :358-369
[5]   Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a constant prey refuge [J].
Chen, Liujuan ;
Chen, Fengde ;
Chen, Lijuan .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (01) :246-252
[6]   Qualitative analysis of predator-prey models with Beddington-DeAngelis functional response and diffusion [J].
Chen, WY ;
Wang, MX .
MATHEMATICAL AND COMPUTER MODELLING, 2005, 42 (1-2) :31-44
[7]  
Cholewa J.W., 2000, LONDON MATH SOC LECT
[8]   Effects of spatial grouping on the functional response of predators [J].
Cosner, C ;
DeAngelis, DL ;
Ault, JS ;
Olson, DB .
THEORETICAL POPULATION BIOLOGY, 1999, 56 (01) :65-75
[9]   MODEL FOR TROPHIC INTERACTION [J].
DEANGELIS, DL ;
GOLDSTEIN, RA ;
ONEILL, RV .
ECOLOGY, 1975, 56 (04) :881-892
[10]   Spatiotemporal dynamics near a codimension-two point [J].
DeWit, A ;
Lima, D ;
Dewel, G ;
Borckmans, P .
PHYSICAL REVIEW E, 1996, 54 (01) :261-271