Exact Algorithms for the Bottleneck Steiner Tree Problem (Extended Abstract)

被引:0
|
作者
Bae, Sang Won [1 ]
Choi, Sunghee [2 ]
Lee, Chunseok [2 ]
Tanigawa, Shin-ichi [3 ]
机构
[1] POSTECH, Dept Comp Sci & Engn, Pohang, South Korea
[2] Korea Adv Inst Sci & Technol, Div Comp Sci, Daejeon, South Korea
[3] Kyoto Univ, Math Sci Res Inst, Kyoto 6068501, Japan
来源
ALGORITHMS AND COMPUTATION, PROCEEDINGS | 2009年 / 5878卷
基金
新加坡国家研究基金会;
关键词
APPROXIMATION ALGORITHM; EUCLIDEAN PLANE;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given n terminals in the plane R-2 and a positive integer k, the bottleneck Steiner tree problem is to find k Steiner points in R-2 so that the longest edge length of the resulting Steiner tree is minimized. In this paper, we study this problem in any L metric. We present the first fixed-parameter tractable algorithm running in O(f (k) . n(2) log n) time for the L-1 and the L-infinity metrics, and the first exact algorithm for any other L-p metric with 1 < p < infinity whose time complexity is O(f (k) . (n(k) + n log n)), where f (k) is a function dependent only on k. Note that prior to this paper there was no known exact algorithm even for the L-2 metric, and our algorithms take a polynomial time in n for fixed k.
引用
收藏
页码:24 / +
页数:2
相关论文
共 50 条
  • [41] FasterDSP: A faster approximation algorithm for directed Steiner tree problem
    Hsieh, Ming-I
    Wu, Eric Hsiao-Kuang
    Tsai, Meng-Feng
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2006, 22 (06) : 1409 - 1425
  • [42] Approximation algorithm for solving the 1-line Steiner tree problem with minimum number of Steiner points
    Liu, Suding
    OPTIMIZATION LETTERS, 2024, 18 (06) : 1421 - 1435
  • [43] On the low-dimensional Steiner minimum tree problem in Hamming metric
    Althaus, Ernst
    Kupilas, Joschka
    Naujoks, Rouven
    THEORETICAL COMPUTER SCIENCE, 2013, 505 : 2 - 10
  • [44] Exact and approximation algorithms for the contiguous translocation distance problem
    Constantin, Maria
    Popa, Alexandru
    THEORETICAL COMPUTER SCIENCE, 2025, 1026
  • [45] A 2-Approximation for the k-Prize-Collecting Steiner Tree Problem
    Lehilton Lelis Chaves Pedrosa
    Hugo Kooki Kasuya Rosado
    Algorithmica, 2022, 84 : 3522 - 3558
  • [46] A 2-Approximation for the k-Prize-Collecting Steiner Tree Problem
    Chaves Pedrosa, Lehilton Lelis
    Kasuya Rosado, Hugo Kooki
    ALGORITHMICA, 2022, 84 (12) : 3522 - 3558
  • [47] Approximate and exact algorithms for an energy minimization traveling salesman problem
    Wang, Shijin
    Liu, Ming
    Chu, Feng
    JOURNAL OF CLEANER PRODUCTION, 2020, 249
  • [48] Exact and approximation algorithms for the complementary maximal strip recovery problem
    Haitao Jiang
    Zhong Li
    Guohui Lin
    Lusheng Wang
    Binhai Zhu
    Journal of Combinatorial Optimization, 2012, 23 : 493 - 506
  • [49] Incremental algorithms for the maximum internal spanning tree problem
    Zhu, Xianbin
    Li, Wenjun
    Yang, Yongjie
    Wang, Jianxin
    SCIENCE CHINA-INFORMATION SCIENCES, 2021, 64 (05)
  • [50] Approximation algorithms for the maximum internal spanning tree problem
    Salamon, Gabor
    Mathematical Foundations of Computer Science 2007, Proceedings, 2007, 4708 : 90 - 102