Exact Algorithms for the Bottleneck Steiner Tree Problem (Extended Abstract)

被引:0
|
作者
Bae, Sang Won [1 ]
Choi, Sunghee [2 ]
Lee, Chunseok [2 ]
Tanigawa, Shin-ichi [3 ]
机构
[1] POSTECH, Dept Comp Sci & Engn, Pohang, South Korea
[2] Korea Adv Inst Sci & Technol, Div Comp Sci, Daejeon, South Korea
[3] Kyoto Univ, Math Sci Res Inst, Kyoto 6068501, Japan
来源
ALGORITHMS AND COMPUTATION, PROCEEDINGS | 2009年 / 5878卷
基金
新加坡国家研究基金会;
关键词
APPROXIMATION ALGORITHM; EUCLIDEAN PLANE;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given n terminals in the plane R-2 and a positive integer k, the bottleneck Steiner tree problem is to find k Steiner points in R-2 so that the longest edge length of the resulting Steiner tree is minimized. In this paper, we study this problem in any L metric. We present the first fixed-parameter tractable algorithm running in O(f (k) . n(2) log n) time for the L-1 and the L-infinity metrics, and the first exact algorithm for any other L-p metric with 1 < p < infinity whose time complexity is O(f (k) . (n(k) + n log n)), where f (k) is a function dependent only on k. Note that prior to this paper there was no known exact algorithm even for the L-2 metric, and our algorithms take a polynomial time in n for fixed k.
引用
收藏
页码:24 / +
页数:2
相关论文
共 50 条
  • [21] Combination Algorithms for Steiner Tree Variants
    Calinescu, Gruia
    Wang, Xiaolang
    ALGORITHMICA, 2023, 85 (01) : 153 - 169
  • [22] Euclidean Bottleneck Steiner Tree is Fixed-Parameter Tractable
    Bandyapadhyay, Sayan
    Lochet, William
    Lokshtanov, Daniel
    Saurabh, Saket
    Xue, Jie
    PROCEEDINGS OF THE 2024 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2024, : 699 - 711
  • [23] New approximation algorithms for the Steiner tree problems
    Karpinski, M
    Zelikovsky, A
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 1997, 1 (01) : 47 - 65
  • [24] New Approximation Algorithms for the Steiner Tree Problems
    Marek Karpinski
    Alexander Zelikovsky
    Journal of Combinatorial Optimization, 1997, 1 : 47 - 65
  • [25] The Bottleneck Selected-Internal and Partial Terminal Steiner Tree Problems
    Chen, Yen Hung
    NETWORKS, 2016, 68 (04) : 331 - 339
  • [26] Approximation algorithms for k-source bottleneck routing cost spanning tree problems -: Extended abstracts
    Chen, YH
    Wu, BY
    Tang, CY
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2004, PT 3, 2004, 3045 : 355 - 366
  • [27] An improved EDA for solving Steiner tree problem
    Liu, Lei
    Wang, Hua
    Kong, Guohong
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2015, 27 (13): : 3483 - 3496
  • [28] An Estimation of Distribution Algorithm for Steiner Tree Problem
    Wang, Yaqing
    Wang, Hua
    Kong, Guohong
    2013 IEEE 15TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING AND COMMUNICATIONS & 2013 IEEE INTERNATIONAL CONFERENCE ON EMBEDDED AND UBIQUITOUS COMPUTING (HPCC_EUC), 2013, : 1687 - 1692
  • [29] An FPTAS for the fractional group Steiner tree problem
    Jelic, Slobodan
    CROATIAN OPERATIONAL RESEARCH REVIEW, 2015, 6 (02) : 525 - 539
  • [30] The Euclidean Bottleneck Steiner Path Problem and Other Applications of (α,β)-Pair Decomposition
    Abu-Affash, A. Karim
    Carmi, Paz
    Katz, Matthew J.
    Segal, Michael
    DISCRETE & COMPUTATIONAL GEOMETRY, 2014, 51 (01) : 1 - 23