Modeling depth for nonparametric foreground segmentation using RGBD devices

被引:21
作者
Moya-Alcover, Gabriel [1 ]
Elgammal, Ahmed [2 ]
Jaume-i-Capo, Antoni [1 ]
Varona, Javier [1 ]
机构
[1] Univ Illes Balears, Dept Ciencies Matemat & Informat, Cra Valldemossa Km 7-5, E-07122 Palma De Mallorca, Spain
[2] Rutgers State Univ, Dept Comp Sci, 110 Frelinghuysen Rd, Piscataway, NJ 08854 USA
关键词
Background subtraction; Non-parametric estimation; Absent depth observations; Moving object detection; RGBD dataset; BACKGROUND SUBTRACTION;
D O I
10.1016/j.patrec.2016.09.004
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The problem of detecting changes in a scene and segmenting the foreground from background is still challenging, despite previous work. Moreover, new RGBD capturing devices include depth cues, which could be incorporated to improve foreground segmentation. In this work, we present a new nonparametric approach where a unified model mixes the device multiple information cues. In order to unify all the device channel cues, a new probabilistic depth data model is also proposed where we show how to handle the inaccurate data to improve foreground segmentation. A new RGBD video dataset is presented in order to introduce a new standard for comparison purposes of this kind of algorithms. Results show that the proposed approach can handle several practical situations and obtain good results in all cases. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:76 / 85
页数:10
相关论文
共 29 条
[1]  
[Anonymous], 1999, P 7 IEEE INT C COMP
[2]  
[Anonymous], VISION MAN MACHINE
[3]   ViBe: A Universal Background Subtraction Algorithm for Video Sequences [J].
Barnich, Olivier ;
Van Droogenbroeck, Marc .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (06) :1709-1724
[4]   Comparative study of background subtraction algorithms [J].
Benezeth, Yannick ;
Jodoin, Pierre-Marc ;
Emile, Bruno ;
Laurent, Helene ;
Rosenberger, Christophe .
JOURNAL OF ELECTRONIC IMAGING, 2010, 19 (03)
[5]  
Bouwmans T., 2014, BACKGROUNDMODELING F
[6]   Traditional and recent approaches in background modeling for foreground detection: An overview [J].
Bouwmans, Thierry .
COMPUTER SCIENCE REVIEW, 2014, 11-12 :31-66
[7]   Multi-sensor background subtraction by fusing multiple region-based probabilistic classifiers [J].
Camplani, Massimo ;
del Blanco, Carlos R. ;
Salgado, Luis ;
Jaureguizar, Fernando ;
Garcia, Narciso .
PATTERN RECOGNITION LETTERS, 2014, 50 :23-33
[8]   Background foreground segmentation with RGB-D Kinect data: An efficient combination of classifiers [J].
Camplani, Massimo ;
Salgado, Luis .
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2014, 25 (01) :122-136
[9]   Multi-modal user identification and object recognition surveillance system [J].
Clapes, Albert ;
Reyes, Miguel ;
Escalera, Sergio .
PATTERN RECOGNITION LETTERS, 2013, 34 (07) :799-808
[10]   Background Subtraction for Automated Multisensor Surveillance: A Comprehensive Review [J].
Cristani, Marco ;
Farenzena, Michela ;
Bloisi, Domenico ;
Murino, Vittorio .
EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2010,