Unveiling the Role of Co in Improving the High-Rate Capability and Cycling Performance of Layered Na0.7Mn0.7Ni0.3-xCoxO2 Cathode Materials for Sodium-Ion Batteries

被引:132
|
作者
Li, Zheng-Yao [1 ]
Zhang, Jicheng [1 ]
Gao, Rui [1 ]
Zhang, Heng [1 ]
Hu, Zhongbo [1 ]
Liu, Xiangfeng [1 ]
机构
[1] Univ Chinese Acad Sci, Coll Mat Sci & Optoelect Technol, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
sodium-ion batteries; cathode materials; layered oxides; P2-structure; cobalt substitution; TRANSITION-METAL OXIDES; HIGH-CAPACITY; HIGH-ENERGY; ELECTROCHEMICAL PROPERTIES; STRUCTURAL EVOLUTION; POSITIVE ELECTRODE; HIGH-VOLTAGE; LITHIUM; SUBSTITUTION; P2-TYPE;
D O I
10.1021/acsami.6b04073
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Co substitution has been extensively used to improve the electrochemical performances of cathode materials for sodium-ion batteries (SIBs), but the role of Co has not been well understood. Herein, we have comprehensively investigated the effects of Co substitution for Ni on the structure and electrochemical performances of Na0.7Mn0.7Ni0.3-xCoxO2 (x = 0, 0.1, 0.3) as cathode materials for SIBs. In comparison with the Co-free sample, the high-rate capability and cycle performance have been greatly improved by the substitution of Co, and some new insights into the role of Co have been proposed for the first time. With the substitution of Co(3+)for Ni2+ the lattice parameter a decreases; however, c increases, and the d-spacing of the sodium-ion diffusion layer has been enlarged, which enhances the diffusion coefficient of "the sodium ion and the high-rate capability of cathode materials. In addition, Co substitution shortens the bond lengths of TM-O (TM = transition metal) and O-O due to the smaller size of Co3+ than Ni2+, which accounts for the decreased thickness and volume of the TMO6 octahedron. The contraction of TM-O and O-O bond lengths" and the shrinkage of the TMO6 octahedron improve the structure stability and the cycle performance. Last but not least, the aliovalent substitution of Co3+ for Ni2+ can improve the electronic conductivity during the electrochemical reaction, which is also favorable to enhance the high-rate performance. This study not only unveils the role of Co in improving the high-rate capability and the cycle stability of layered Na0.7Mn0.7Ni0.3-xCoxO2 cathode materials but also offers some new insights into designing high performance cathode materials for SIBs.
引用
收藏
页码:15439 / 15448
页数:10
相关论文
共 50 条
  • [31] Na vacancies and Li doping synergistically constructed P2-type Na0.5Li0.1Ni0.2Mn0.7O2 as high-performance cathode material for sodium-ion batteries
    Zhang, Bo
    Xu, Shoudong
    Lu, Zhonghua
    Zhang, Zhitao
    Chen, Liang
    Zhang, Ding
    MATERIALS LETTERS, 2023, 350
  • [32] Excellent cyclability of P2-type Na-Co-Mn-Si-O cathode material for high-rate sodium-ion batteries
    Wang, Lijun
    Wang, Yanzhi
    Yang, Xiaheng
    Wang, Jinlong
    Yang, Xiduo
    Tang, Jiantao
    JOURNAL OF MATERIALS SCIENCE, 2019, 54 (19) : 12723 - 12736
  • [33] Synthesis of LiCo0.3Ni0.7O2 cathode materials for lithium ion batteries by oxidation-ion exchange of β-Co0.3Ni0.7(OH)2 and LiOH at low temperature
    Dong-Ge, Tong
    Ai-Dong, Tang
    Wei, Chu
    Lian-Xing, Tang
    Ke-Long, Huang
    Yi, He
    Xiao-Yang, Ji
    MATERIALS CHEMISTRY AND PHYSICS, 2008, 107 (2-3) : 385 - 391
  • [34] Novel layered K0.7Mn0.7Ni0.3O2 cathode material with enlarged diffusion channels for high energy density sodium-ion batteries具有大扩散通道的新型层状K0.7Mn0.7Ni0.3O2正极 材料用于高能量密度钠离子电池
    Jinghui Chen
    Zhitong Xiao
    Jiashen Meng
    Jinzhi Sheng
    Yanan Xu
    Junjun Wang
    Chunhua Han
    Liqiang Mai
    Science China Materials, 2020, 63 : 1163 - 1170
  • [35] Single-Crystal P2-Na0.67Mn0.67Ni0.33O2 Cathode Material with Improved Cycling Stability for Sodium-Ion Batteries
    Pamidi, Venkat
    Naranjo, Carlos
    Fuchs, Stefan
    Stein, Helge
    Diemant, Thomas
    Li, Yueliang
    Biskupek, Johannes
    Kaiser, Ute
    Dinda, Sirshendu
    Reupert, Adam
    Behara, Santosh
    Hu, Yang
    Trivedi, Shivam
    Munnangi, Anji Reddy
    Barpanda, Prabeer
    Fichtner, Maximilian
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (20) : 25953 - 25965
  • [36] Stable layered P3/P2 Na0.66Co0.5Mn0.5O2 cathode materials for sodium-ion batteries
    Chen, Xiaoqing
    Zhou, Xianlong
    Hu, Meng
    Liang, Jing
    Wu, Dihua
    Wei, Jinping
    Zhou, Zhen
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (41) : 20708 - 20714
  • [37] Li-Substituted Co-Free Layered P2/O3 Biphasic Na0.67Mn0.55Ni0.25Ti0.2-xLixO2 as High-Rate-Capability Cathode Materials for Sodium Ion Batteries
    Li, Zheng-Yao
    Zhang, Jicheng
    Gao, Rui
    Zhang, Heng
    Zheng, Lirong
    Hu, Zhongbo
    Liu, Xiangfeng
    JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (17) : 9007 - 9016
  • [38] Improving the Na0.67Ni0.33Mn0.67O2 Cathode Material for High-Voltage Cyclability via Ti/Cu Codoping for Sodium-Ion Batteries
    Pei, Quan
    Lu, Mingliang
    Liu, Zhiliang
    Li, Dong
    Rao, Xianfa
    Liu, Xiaolin
    Zhong, Shengwen
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (02) : 1953 - 1962
  • [39] Ultralong Layered NaCrO2 Nanowires: A Competitive Wide-Temperature-Operating Cathode for Extraordinary High-Rate Sodium-Ion Batteries
    Liang, Longwei
    Sun, Xuan
    Denis, Dienguila Kionga
    Zhang, Jinyang
    Hou, Linrui
    Liu, Yang
    Yuan, Changzhou
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (04) : 4037 - 4046
  • [40] P2-type Na0.67Mn0.72Ni0.14Co0.14O2 with K+ doping as new high rate performance cathode material for sodium-ion batteries
    Wang, Kai
    Wu, Zhen-Guo
    Zhang, Tao
    Deng, Ya-Ping
    Li, Jun-Tao
    Guo, Xiao-Dong
    Xu, Bin-Bin
    Zhong, Ben-He
    ELECTROCHIMICA ACTA, 2016, 216 : 51 - 57