Unveiling the Role of Co in Improving the High-Rate Capability and Cycling Performance of Layered Na0.7Mn0.7Ni0.3-xCoxO2 Cathode Materials for Sodium-Ion Batteries

被引:132
|
作者
Li, Zheng-Yao [1 ]
Zhang, Jicheng [1 ]
Gao, Rui [1 ]
Zhang, Heng [1 ]
Hu, Zhongbo [1 ]
Liu, Xiangfeng [1 ]
机构
[1] Univ Chinese Acad Sci, Coll Mat Sci & Optoelect Technol, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
sodium-ion batteries; cathode materials; layered oxides; P2-structure; cobalt substitution; TRANSITION-METAL OXIDES; HIGH-CAPACITY; HIGH-ENERGY; ELECTROCHEMICAL PROPERTIES; STRUCTURAL EVOLUTION; POSITIVE ELECTRODE; HIGH-VOLTAGE; LITHIUM; SUBSTITUTION; P2-TYPE;
D O I
10.1021/acsami.6b04073
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Co substitution has been extensively used to improve the electrochemical performances of cathode materials for sodium-ion batteries (SIBs), but the role of Co has not been well understood. Herein, we have comprehensively investigated the effects of Co substitution for Ni on the structure and electrochemical performances of Na0.7Mn0.7Ni0.3-xCoxO2 (x = 0, 0.1, 0.3) as cathode materials for SIBs. In comparison with the Co-free sample, the high-rate capability and cycle performance have been greatly improved by the substitution of Co, and some new insights into the role of Co have been proposed for the first time. With the substitution of Co(3+)for Ni2+ the lattice parameter a decreases; however, c increases, and the d-spacing of the sodium-ion diffusion layer has been enlarged, which enhances the diffusion coefficient of "the sodium ion and the high-rate capability of cathode materials. In addition, Co substitution shortens the bond lengths of TM-O (TM = transition metal) and O-O due to the smaller size of Co3+ than Ni2+, which accounts for the decreased thickness and volume of the TMO6 octahedron. The contraction of TM-O and O-O bond lengths" and the shrinkage of the TMO6 octahedron improve the structure stability and the cycle performance. Last but not least, the aliovalent substitution of Co3+ for Ni2+ can improve the electronic conductivity during the electrochemical reaction, which is also favorable to enhance the high-rate performance. This study not only unveils the role of Co in improving the high-rate capability and the cycle stability of layered Na0.7Mn0.7Ni0.3-xCoxO2 cathode materials but also offers some new insights into designing high performance cathode materials for SIBs.
引用
收藏
页码:15439 / 15448
页数:10
相关论文
共 50 条
  • [21] Exploring the Charge Compensation Mechanism of P2-Type Na0.6Mg0.3Mn0.7O2 Cathode Materials for Advanced Sodium-Ion Batteries
    Cheng, Chen
    Ding, Manling
    Yan, Tianran
    Dai, Kehua
    Mao, Jing
    Zhang, Nian
    Zhang, Liang
    Guo, Jinghua
    ENERGIES, 2020, 13 (21)
  • [22] A P2-Na0.67Co0.5Mn0.5O2 cathode material with excellent rate capability and cycling stability for sodium ion batteries
    Zhu, Yuan-En
    Qi, Xingguo
    Chen, Xiaoqing
    Zhou, Xianlong
    Zhang, Xu
    Wei, Jinping
    Hu, Yongsheng
    Zhou, Zhen
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (28) : 11103 - 11109
  • [23] A comprehensive modification enables the high rate capability of P2-Na0.75Mn0.67Ni0.33O2 for sodium-ion cathode materials
    Feng, Xiaochen
    Li, Yong
    Shi, Qinhao
    Wang, Xuan
    Yin, Xiuping
    Wang, Jing
    Xia, Zhonghong
    Xiao, Haiyan
    Chen, Aibing
    Yang, Xinxin
    Zhao, Yufeng
    JOURNAL OF ENERGY CHEMISTRY, 2022, 69 : 442 - 449
  • [24] Layered P2-type Na0.5Ni0.25Mn0.75O2 as a high performance cathode material for sodium-ion batteries
    Manikandan, P.
    Ramasubramonian, D.
    Shaijumon, M. M.
    ELECTROCHIMICA ACTA, 2016, 206 : 199 - 206
  • [25] A P2-NaxCo0.7Mn0.3O2 (x ≈ 1.0) cathode material for Na-ion batteries with superior rate and cycle capability
    Shen, Yanbin
    Birgisson, Steinar
    Iversen, Bo B.
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (31) : 12281 - 12288
  • [26] Enhanced Electrochemical Performance of Mg-Doped P2-Na0.7[Ni0.3Mn0.6Fe0.1]O2 Cobalt-Free Cathode Materials for Sodium-Ion Batteries
    Mishra, Raghvendra
    Patel, Anupam
    Tiwari, Anurag
    Samriddhi, Shitanshu Pratap
    Singh, Shitanshu Pratap
    Yadav, Vikas
    Tiwari, Rupesh Kumar
    Singh, Rajendra Kumar
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (15): : 6736 - 6745
  • [27] Lattice regulation strategy for constructing high-rate performance Na0.44Mn0.895Ti0.1Mg0.005O2 sodium-ion batteries cathode materials
    Hua, Zhonge
    Jian, Yuxuan
    Jijie, Wang
    Lin, Yuhua
    Zhou, Wenqing
    Jiang, Hongyuqi
    Shen, Yongqiang
    Wu, Xianwen
    Xiang, Yanhong
    JOURNAL OF SOLID STATE CHEMISTRY, 2024, 329
  • [28] Electrochemical Properties of Layered Na x Ni x/2Mn1-x/2O2 (0.5 ≤ x ≤ 1.1) with P3 Structure as Cathode for Sodium-Ion Batteries
    Yang, Liangtao
    Sun, Yanan
    Adelhelm, Philipp
    ENERGY TECHNOLOGY, 2022, 10 (04)
  • [29] Layered Co/Ni-free Mn-rich oxide P2-Na2/3Mn0.8Fe0.1Mg0.1O2 as high-performance cathode material for sodium-ion batteries
    Li, Yuqing
    Li, Zheng-Yao
    Sun, Kai
    Liu, Yun-Tao
    Chen, Dong-Feng
    Han, Song-Bai
    He, Lin-Feng
    Li, Mei-Juan
    Liu, Xiao-Long
    Wu, Mei-Mei
    IONICS, 2020, 26 (02) : 735 - 743
  • [30] New insights into designing high-rate performance cathode materials for sodium ion batteries by enlarging the slab-spacing of the Na-ion diffusion layer
    Li, Zheng-Yao
    Gao, Rui
    Zhang, Jicheng
    Zhang, Xiuling
    Hu, Zhongbo
    Liu, Xiangfeng
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (09) : 3453 - 3461