LIOUVILLE TYPE THEOREMS, A PRIORI ESTIMATES AND EXISTENCE OF SOLUTIONS FOR SUB-CRITICAL ORDER LANE-EMDEN-HARDY EQUATIONS

被引:14
作者
Dai, Wei [1 ,2 ]
Peng, Shaolong [1 ]
Qin, Guolin [3 ,4 ]
机构
[1] Beihang Univ BUAA, Sch Math Sci, Beijing 100083, Peoples R China
[2] Univ Sorbonne Paris Nord, Inst GALILEE, LAGA, UMR 7539, F-93430 Villetaneuse, France
[3] Chinese Acad Sci, Inst Appl Math, Beijing 100190, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2022年 / 146卷 / 02期
关键词
PRESCRIBING SCALAR CURVATURE; SEMILINEAR ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; LOCAL BEHAVIOR; ASYMPTOTIC SYMMETRY; CLASSIFICATION; PROPERTY;
D O I
10.1007/s11854-022-0207-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the sub-critical order Lane-Emden-Hardy equations (0.1) (- Delta)(m)u(x) = u(p)(x)/vertical bar x vertical bar(a) in R-n with n >= 3, 1 <= m< n/2, 0 <= a < 2m and p > 1. We establish Liouville theorems in the ranges 1 < p < n+2m-2a/n-2m if 0 <= a < 2 and 1 < p < +infinity if 2 <= a < 2m for nonnegative classical solutions of equations (0.1), that is, the unique nonnegative solution is u equivalent to 0. As an application, we derive a priori estimates and the existence of positive solutions to sub-critical order Lane-Emden equations in bounded domains.
引用
收藏
页码:673 / 718
页数:46
相关论文
共 45 条
[31]   SYMMETRY AND RELATED PROPERTIES VIA THE MAXIMUM PRINCIPLE [J].
GIDAS, B ;
NI, WM ;
NIRENBERG, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 68 (03) :209-243
[32]   Asymptotic properties of positive solutions of the Hardy-Sobolev type equations [J].
Lei, Yutian .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (04) :1774-1799
[33]  
Li CM, 1996, INVENT MATH, V123, P221, DOI 10.1007/s002220050023
[34]   PRESCRIBING SCALAR CURVATURE ON S-N AND RELATED PROBLEMS .1. [J].
LI, YY .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 120 (02) :319-410
[35]   A classification of solutions of a conformally invariant fourth order equation in Rn [J].
Lin, CS .
COMMENTARII MATHEMATICI HELVETICI, 1998, 73 (02) :206-231
[36]  
Mitidieri E., 2001, Tr. Mat. Inst. Steklova, V234, P1
[37]  
Mitidieri E., 1996, Differential Integral Equations, V9, P465
[38]   Singularity and decay estimates in superlinear problems via Liouville-type theorems,: I:: Elliptic equations and systems [J].
Polacik, Peter ;
Quittner, Pavol ;
Souplet, Philippe .
DUKE MATHEMATICAL JOURNAL, 2007, 139 (03) :555-579
[39]  
Phan QH, 2015, ADV NONLINEAR STUD, V15, P415
[40]   Liouville-type theorems and bounds of solutions of Hardy-Henon equations [J].
Quoc Hung Phan ;
Souplet, Philippe .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (03) :2544-2562