LIOUVILLE TYPE THEOREMS, A PRIORI ESTIMATES AND EXISTENCE OF SOLUTIONS FOR SUB-CRITICAL ORDER LANE-EMDEN-HARDY EQUATIONS

被引:14
作者
Dai, Wei [1 ,2 ]
Peng, Shaolong [1 ]
Qin, Guolin [3 ,4 ]
机构
[1] Beihang Univ BUAA, Sch Math Sci, Beijing 100083, Peoples R China
[2] Univ Sorbonne Paris Nord, Inst GALILEE, LAGA, UMR 7539, F-93430 Villetaneuse, France
[3] Chinese Acad Sci, Inst Appl Math, Beijing 100190, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2022年 / 146卷 / 02期
关键词
PRESCRIBING SCALAR CURVATURE; SEMILINEAR ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; LOCAL BEHAVIOR; ASYMPTOTIC SYMMETRY; CLASSIFICATION; PROPERTY;
D O I
10.1007/s11854-022-0207-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the sub-critical order Lane-Emden-Hardy equations (0.1) (- Delta)(m)u(x) = u(p)(x)/vertical bar x vertical bar(a) in R-n with n >= 3, 1 <= m< n/2, 0 <= a < 2m and p > 1. We establish Liouville theorems in the ranges 1 < p < n+2m-2a/n-2m if 0 <= a < 2 and 1 < p < +infinity if 2 <= a < 2m for nonnegative classical solutions of equations (0.1), that is, the unique nonnegative solution is u equivalent to 0. As an application, we derive a priori estimates and the existence of positive solutions to sub-critical order Lane-Emden equations in bounded domains.
引用
收藏
页码:673 / 718
页数:46
相关论文
共 45 条
[1]  
[Anonymous], 1981, Communications in Partial Differential Equations, DOI [10.1080/03605308108820196, 10.1080/03605308108820196.1, DOI 10.1080/03605308108820196.1]
[2]  
[Anonymous], 1981, Mathematical analysis and applications, Part A, Adv. in Math. Suppl. Stud
[3]  
[Anonymous], 1996, Differential Integral Equations
[4]   THE SCALAR-CURVATURE PROBLEM ON THE STANDARD 3-DIMENSIONAL SPHERE [J].
BAHRI, A ;
CORON, JM .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 95 (01) :106-172
[5]  
Bidaut-Veron MF, 2010, ADV DIFFERENTIAL EQU, V15, P1033
[6]   UNIFORM ESTIMATES AND BLOW UP BEHAVIOR FOR SOLUTIONS OF -DELTA-U = V(X)EU IN 2 DIMENSIONS [J].
BREZIS, H ;
MERLE, F .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1991, 16 (8-9) :1223-1253
[7]   ASYMPTOTIC SYMMETRY AND LOCAL BEHAVIOR OF SEMILINEAR ELLIPTIC-EQUATIONS WITH CRITICAL SOBOLEV GROWTH [J].
CAFFARELLI, LA ;
GIDAS, B ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (03) :271-297
[8]   Classification of nonnegative solutions to a bi-harmonic equation with Hartree type nonlinearity [J].
Cao, Daomin ;
Dai, Wei .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2019, 149 (04) :979-994
[9]  
Chang SYA, 1997, MATH RES LETT, V4, P91
[10]   A PERTURBATION RESULT IN PRESCRIBING SCALAR CURVATURE ON SN [J].
CHANG, SYA ;
YANG, PC .
DUKE MATHEMATICAL JOURNAL, 1991, 64 (01) :27-69