NONTRIVIAL SOLUTIONS FOR PARTIAL DISCRETE DIRICHLET PROBLEMS VIA A LOCAL MINIMUM THEOREM FOR FUNCTIONALS

被引:3
作者
Heidarkhani, Shapour [1 ]
Imbesi, Maurizio [2 ]
机构
[1] Razi Univ, Fac Sci, Dept Math, Kermanshah 67149, Iran
[2] Univ Messina, Dept Math & Comp Sci, Phys & Earth Sci, Viale F Stagno dAlcontres 31, I-98166 Messina, Italy
来源
JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS | 2019年 / 2019卷
关键词
Discrete nonlinear boundary value problems; Algebraic systems; Nontrivial solutions; Difference equations; Critical points theory; NONLINEAR-SYSTEM; MULTIPLE SOLUTIONS; POSITIVE SOLUTIONS; EXISTENCE;
D O I
10.23952/jnfa.2019.42
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on a local minimum theorem for differentiable functionals, the existence of non-trivial solutions for a partial discrete Dirichlet problem depending on a real parameter is discussed.
引用
收藏
页数:14
相关论文
共 26 条
  • [1] Multiple positive solutions of singular discrete p-Laplacian problems via variational methods
    Agarwal, Ravi P.
    Perera, Kanishka
    O'Regan, Donal
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2005, 2005 (02) : 93 - 99
  • [2] Agarwal RP, 2000, DIFFERENCE EQUATIONS
  • [3] Bereanu C, 2006, MATH BOHEM, V131, P145
  • [4] Nonlinear algebraic systems with discontinuous terms
    Bisci, Giovanni Molica
    Repovs, Dusan
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 398 (02) : 846 - 856
  • [5] A critical point theorem via the Ekeland variational principle
    Bonanno, Gabriele
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (05) : 2992 - 3007
  • [6] Infinitely Many Solutions for a Boundary Value Problem with Discontinuous Nonlinearities
    Bonanno, Gabriele
    Bisci, Giovanni Molica
    [J]. BOUNDARY VALUE PROBLEMS, 2009,
  • [7] Multiple solutions for discrete boundary value problems
    Cabada, Alberto
    Iannizzotto, Antonio
    Tersian, Stepan
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 356 (02) : 418 - 428
  • [8] Existence of solutions for a nonlinear algebraic system with a parameter
    Candito, Pasquale
    Bisci, Giovanni Molica
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (23) : 11700 - 11707
  • [9] Candito P, 2011, ADV NONLINEAR STUD, V11, P443
  • [10] Cheng S. S., 2003, PARTIAL DIFFERENCE E