NONTRIVIAL SOLUTIONS FOR PARTIAL DISCRETE DIRICHLET PROBLEMS VIA A LOCAL MINIMUM THEOREM FOR FUNCTIONALS

被引:3
作者
Heidarkhani, Shapour [1 ]
Imbesi, Maurizio [2 ]
机构
[1] Razi Univ, Fac Sci, Dept Math, Kermanshah 67149, Iran
[2] Univ Messina, Dept Math & Comp Sci, Phys & Earth Sci, Viale F Stagno dAlcontres 31, I-98166 Messina, Italy
来源
JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS | 2019年 / 2019卷
关键词
Discrete nonlinear boundary value problems; Algebraic systems; Nontrivial solutions; Difference equations; Critical points theory; NONLINEAR-SYSTEM; MULTIPLE SOLUTIONS; POSITIVE SOLUTIONS; EXISTENCE;
D O I
10.23952/jnfa.2019.42
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on a local minimum theorem for differentiable functionals, the existence of non-trivial solutions for a partial discrete Dirichlet problem depending on a real parameter is discussed.
引用
收藏
页数:14
相关论文
共 26 条
[1]   Multiple positive solutions of singular discrete p-Laplacian problems via variational methods [J].
Agarwal, Ravi P. ;
Perera, Kanishka ;
O'Regan, Donal .
ADVANCES IN DIFFERENCE EQUATIONS, 2005, 2005 (02) :93-99
[2]  
Agarwal RP, 2000, DIFFERENCE EQUATIONS
[3]  
Bereanu C, 2006, MATH BOHEM, V131, P145
[4]   Nonlinear algebraic systems with discontinuous terms [J].
Bisci, Giovanni Molica ;
Repovs, Dusan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 398 (02) :846-856
[5]   A critical point theorem via the Ekeland variational principle [J].
Bonanno, Gabriele .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (05) :2992-3007
[6]   Infinitely Many Solutions for a Boundary Value Problem with Discontinuous Nonlinearities [J].
Bonanno, Gabriele ;
Bisci, Giovanni Molica .
BOUNDARY VALUE PROBLEMS, 2009,
[7]   Multiple solutions for discrete boundary value problems [J].
Cabada, Alberto ;
Iannizzotto, Antonio ;
Tersian, Stepan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 356 (02) :418-428
[8]   Existence of solutions for a nonlinear algebraic system with a parameter [J].
Candito, Pasquale ;
Bisci, Giovanni Molica .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (23) :11700-11707
[9]  
Candito P, 2011, ADV NONLINEAR STUD, V11, P443
[10]  
Cheng S. S., 2003, PARTIAL DIFFERENCE E